题目描述

“第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵。

第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作。

第三分钟,k说,要能查询,于是便有了求给定矩形区域内的全部数字和的操作。

第四分钟,彩虹喵说,要基于二叉树的数据结构,于是便有了数据范围。

第五分钟,和雪说,要有耐心,于是便有了时间限制。

第六分钟,吃钢琴男说,要省点事,于是便有了保证运算过程中及最终结果均不超过32位有符号整数类型的表示范围的限制。

第七分钟,这道题终于造完了,然而,造题的神牛们再也不想写这道题的程序了。”

——《上帝造裸题的七分钟》

所以这个神圣的任务就交给你了。

输入

输入数据的第一行为X n m,代表矩阵大小为n×m。

从输入数据的第二行开始到文件尾的每一行会出现以下两种操作:

L a b c d delta —— 代表将(a,b),(c,d)为顶点的矩形区域内的所有数字加上delta。

k a b c d   —— 代表求(a,b),(c,d)为顶点的矩形区域内所有数字的和。

请注意,k为小写。

输出

针对每个k操作,在单独的一行输出答案。

样例输入

X 4 4
L 1 1 3 3 2
L 2 2 4 4 1
k 2 2 3 3

样例输出

12


题解

二维树状数组区间修改区间查询

头一次知道树状数组还能实现区间修改区间查询~

我们先考虑一维的情况:树状数组的本质是$O(\log n)$维护前缀和,前缀相减可以得到区间和。

而又有一种区间修改单点查询的方法:差分。

设$d[i]=a[i]-a[i-1]$,那么$a[i]=(a[i]-a[i-1])+(a[i-1]-a[i-2])+...+(a[1]-a[0])=\sum\limits_{i=1}^nd[i]$,于是可以按照相同的方法维护差分数组的前缀和,修改的时候直接将l加上,r+1减去即可。

那么对于区间查询呢?我们还是引入差分的思想,则$\sum\limits_{i=1}^na[i]=\sum\limits_{i=1}^n\sum\limits_{j=1}^id[j]=\sum\limits_{j=1}^n(n+1-j)d[j]=(n+1)\sum\limits_{j=1}^nd[j]-\sum\limits_{j=1}^nj·d[j]$。所以维护两个树状数组,一个维护d[j]的前缀和,一个维护j*d[j]的前缀和就可以了。

那么对于本题变成二维的呢?其实也是一样的。

还是使用差分的方法,$a[n][m]=\sum\limits_{i=1}^n\sum\limits_{j=1}^md[i][j]$,$\sum\limits_{i=1}^n\sum\limits_{j=1}^ma[i][j]=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{k=1}^i\sum\limits_{l=1}^jd[k][l]=\sum\limits_{k=1}^n\sum\limits_{l=1}^m(n+1-k)(m+1-l)d[k][l]$。

展开什么的,自己动手丰衣足食

然后开4个树状数组即可。修改和查询时使用容斥原理拆成4段来完成。

#include <cstdio>
#include <algorithm>
#define N 2055
using namespace std;
int n , m;
char str[5];
struct data
{
int f[N][N];
void update(int x , int y , int a)
{
int i , j;
for(i = x ; i <= n ; i += i & -i)
for(j = y ; j <= m ; j += j & -j)
f[i][j] += a;
}
int query(int x , int y)
{
int i , j , ans = 0;
for(i = x ; i ; i -= i & -i)
for(j = y ; j ; j -= j & -j)
ans += f[i][j];
return ans;
}
}A , B , C , D;
void modify(int x , int y , int z)
{
A.update(x , y , z) , B.update(x , y , x * z) , C.update(x , y , y * z) , D.update(x , y , x * y * z);
}
int solve(int x , int y)
{
return (x + 1) * (y + 1) * A.query(x , y) - (y + 1) * B.query(x , y) - (x + 1) * C.query(x , y) + D.query(x , y);
}
int main()
{
int x1 , y1 , x2 , y2 , z;
scanf("%*s%d%d" , &n , &m);
while(~scanf("%s%d%d%d%d" , str , &x1 , &y1 , &x2 , &y2))
{
if(str[0] == 'L')
{
scanf("%d" , &z) , x2 ++ , y2 ++ ;
modify(x1 , y1 , z) , modify(x2 , y1 , -z) , modify(x1 , y2 , -z) , modify(x2 , y2 , z);
}
else x1 -- , y1 -- , printf("%d\n" , solve(x1 , y1) - solve(x2 , y1) - solve(x1 , y2) + solve(x2 , y2));
}
return 0;
}

【bzoj3132】上帝造题的七分钟 二维树状数组区间修改区间查询的更多相关文章

  1. [bzoj3132]上帝造题的七分钟——二维树状数组

    题目大意 你需要实现一种数据结构,支援以下操作. 给一个矩阵的子矩阵的所有元素同时加一个数. 计算子矩阵和. 题解 一看这个题,我就首先想到用线段树套线段树做. 使用二维线段树的错误解法 其实是第一次 ...

  2. 【BZOJ3132】【TYVJ1716】上帝造题的七分钟 二维树状数组

    题目大意 维护一个\(n\times m\)的矩阵,有两种操作: \(1~x_1~y_1~x_2~y_2~v\):把\((a,b),(c,d)\)为顶点的矩形区域内的所有数字加上\(v\). \(2~ ...

  3. tyvj P1716 - 上帝造题的七分钟 二维树状数组区间查询及修改 二维线段树

    P1716 - 上帝造题的七分钟 From Riatre    Normal (OI)总时限:50s    内存限制:128MB    代码长度限制:64KB 背景 Background 裸体就意味着 ...

  4. P4514 上帝造题的七分钟——二维树状数组

    P4514 上帝造题的七分钟 求的是矩阵里所有数的和: 维护四个树状数组: #include<cstdio> #include<cstring> #include<alg ...

  5. 【bzoj5173】[Jsoi2014]矩形并 扫描线+二维树状数组区间修改区间查询

    题目描述 JYY有N个平面坐标系中的矩形.每一个矩形的底边都平行于X轴,侧边平行于Y轴.第i个矩形的左下角坐标为(Xi,Yi),底边长为Ai,侧边长为Bi.现在JYY打算从这N个矩形中,随机选出两个不 ...

  6. POJ2155 Matrix(二维树状数组||区间修改单点查询)

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...

  7. poj 2155 (二维树状数组 区间修改 求某点值)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 33682   Accepted: 12194 Descript ...

  8. [POJ3468]关于整数的简单题 (你想要的)树状数组区间修改区间查询

    #include <cstdio> #include <algorithm> #include <cstring> #include <cctype> ...

  9. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

随机推荐

  1. 【Hutool】Hutool工具类之String工具——StrUtil

    类似的是commons-lang中的StringUtils 空与非空的操作——经典的isBlank/isNotBlank.isEmpty/isNotEmpty isBlank()——是否为空白,空白的 ...

  2. Caliburn.Micro 杰的入门教程1(翻译)

    Caliburn.Micro 杰的入门教程1(原创翻译)Caliburn.Micro 杰的入门教程2 ,了解Data Binding 和 Events(翻译)Caliburn.Micro 杰的入门教程 ...

  3. P1488 肥猫的游戏

    题目描述 野猫与胖子,合起来简称肥猫,是一个班的同学,他们也都是数学高手,所以经常在一起讨论数学问题也就不足为奇了.一次,野猫遇到了一道有趣的几何游戏题目,便拿给胖子看.游戏要求在一个有n个顶点凸多边 ...

  4. 成都Uber优步司机奖励政策(1月8日)

    1月8日 奖励政策 滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblog ...

  5. SIFT 特征点提取算法

    SIFT特征点相对于ORB计算速度较慢,在没有GPU加速情况下,无法满足视觉里程计的实时性要求,或者无法运行在手机平台上,但是效果更好,精度更高.在应用时可以择优选取,了解其本质原理的动机是为了自己使 ...

  6. steam更新出错 应用运行中

    游戏程序没有完全关闭,仍在后台运行. 打开任务处理器,选择进程,下面找到TslGame,关闭之.

  7. 一个小白的测试环境docker化之路

    本文来自网易云社区 作者:叶子 学习docker搭建测试环境断断续续也有三个多月了,希望记录一下这个过程.常言道,总结过去,展望未来嘛~文章浅显,还望各位大神路过轻拍. 按照国际惯例,先说一下背景: ...

  8. Spark性能优化--数据倾斜调优与shuffle调优

    一.数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特 ...

  9. 关于 Windows 10 字体安装目录的问题

    不知从什么时候开始,本人台式机的Win10系统在安装字体的时候并不是安装到C:\Windows\Fonts目录中,而是安装到%USERPROFILE%\AppData\Local\Microsoft\ ...

  10. android分析windowManager、window、viewGroup之间关系(二)

    三.接上一节,分析windowManager中添加一个悬浮框的方式,首先看代码 WindowManager.LayoutParams params = new LayoutParams(); para ...