description

在线询问区间内出现次数为正偶数的数的种数。

data range

\[n,m\le 10^5
\]

solution

分块大法好

首先离散化权值

这种对于权值做询问并且询问放在一起的分块其实很好做

我们首先预处理出以下两个东西:

1:\(s[i][j]\),表示前\(i\)个块内权值为\(j\)的数的个数,这个预处理是\(O(n\sqrt n)\)的

2:\(w[i][j]\),表示第\(i\)个块到第\(j\)个块内我们要查询的信息,

这个我们每次从\(\sqrt n\)个块的块头开始扫一边数组即可,复杂度为\(O(n\sqrt n)\)

查询的时候,首先调用\(w[i][j]\)调用整体块内的信息

对于两边的\(2\sqrt n\)个数,我们可以使用桶+查询整体块内对应权值来获取对应最多\(2\sqrt n\)个权值的信息

于是我们就用时间和空间复杂度均为\(O(n\sqrt n)\)的分块解决了这种题目

Code

#include<bits/stdc++.h>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<iomanip>
#include<cstring>
#include<complex>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define Cpy(x,y) memcpy(x,y,sizeof(x))
#define Set(x,y) memset(x,y,sizeof(x))
#define FILE "2821"
#define mp make_pair
#define pb push_back
#define RG register
#define il inline
using namespace std;
typedef unsigned long long ull;
typedef vector<int>VI;
typedef long long ll;
typedef double dd;
const int N=100010;
const int M=10000010;
const dd eps=1e-5;
const int inf=2147483647;
const ll INF=1ll<<60;
const ll P=100000;
il ll read(){
RG ll data=0,w=1;RG char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch<='9'&&ch>='0')data=data*10+ch-48,ch=getchar();
return data*w;
} il void file(){
srand(time(NULL)+rand());
freopen(FILE".in","r",stdin);
freopen(FILE".out","w",stdout);
} int n,c,Q,m,blk,len,o[N],a[N],b[N],s[352][N],w[352][352],t[N],ans; int main()
{
n=read();c=read();Q=read();m=350;blk=(n-1)/m+1;
for(RG int i=1;i<=n;i++){o[i]=a[i]=read();b[i]=(i-1)/m+1;}
sort(o+1,o+n+1);len=unique(o+1,o+n+1)-o-1;
for(RG int i=1;i<=n;i++)a[i]=lower_bound(o+1,o+len+1,a[i])-o;
for(RG int i=1;i<=blk;i++){
for(RG int j=1;j<=len;j++)s[i][j]=s[i-1][j];
for(RG int j=(i-1)*m+1;j<=n&&j<=i*m;j++)s[i][a[j]]++;
memset(t,0,sizeof(t));ans=0;
for(RG int j=i;j<=blk;w[i][j]=ans,j++)
for(RG int k=(j-1)*m+1;k<=n&&k<=j*m;k++){
t[a[k]]++;if(t[a[k]]>=2)(t[a[k]]&1)?ans--:ans++;
}
}
ans=0;
while(Q--){
RG int l=(read()+ans)%n+1,r=(read()+ans)%n+1;if(l>r)swap(l,r);
if(b[l]==b[r]){
ans=0;
for(RG int i=l;i<=r;i++)t[a[i]]=0;
for(RG int i=l;i<=r;i++){
t[a[i]]++;if(t[a[i]]>=2)(t[a[i]]&1)?ans--:ans++;
}
}
else{
for(RG int i=l;i==l||i%m!=1;i++)t[a[i]]=0;
for(RG int i=r;i==r||i%m!=0;i--)t[a[i]]=0;
ans=w[b[l]+1][b[r]-1];
for(RG int i=l,ret;i==l||i%m!=1;i++){
if(!t[a[i]])t[a[i]]+=(s[b[r]-1][a[i]]-s[b[l]][a[i]]);
t[a[i]]++;ret=t[a[i]];
if(ret>=2)(ret&1)?ans--:ans++;
}
for(RG int i=r,ret;i==r||i%m!=0;i--){
if(!t[a[i]])t[a[i]]+=(s[b[r]-1][a[i]]-s[b[l]][a[i]]);
t[a[i]]++;ret=t[a[i]];
if(ret>=2)(ret&1)?ans--:ans++;
}
}
printf("%d\n",ans);
} return 0;
}

[BZOJ2821]作诗的更多相关文章

  1. BZOJ2821 作诗(Poetize) 【分块】

    BZOJ2821 作诗(Poetize) Description 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI ...

  2. 【分块】BZOJ2821 作诗(Poetize)

    2821: 作诗(Poetize) Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 3265  Solved: 951[Submit][Status][ ...

  3. bzoj2821作诗

    http://www.lydsy.com/JudgeOnline/problem.php?id=2821 分块 我们把数列分成$\sqrt{N}$块 记$f[i][j]$表示第i块到第j块的答案,这个 ...

  4. BZOJ2821 作诗(Poetize) 主席树 bitset

    原文链接https://www.lydsy.com/JudgeOnline/problem.php?id=2821 题目传送门 - BZOJ2821 题意 $n$ 个数,$m$ 组询问,每次问 $[l ...

  5. BZOJ2821 作诗(分块)

    和区间众数几乎一模一样的套路. // luogu-judger-enable-o2 #include<iostream> #include<cstdio> #include&l ...

  6. bzoj2821: 作诗(Poetize)

    分块 分sqrt(n)块 F[i][j]表示块i到块j的答案 s[i][j]表示数字i在前j块内出现了几次 #include <iostream> #include <cstdio& ...

  7. BZOJ2821 作诗(Poetize) 分块

    题意 算法 经验总结 代码 题意 不带修改,查询数列[1,n]中[l,r]内的出现正偶数次的数的个数, 数列中的数 <= 1e5, n <= 1e5, 强制在线 算法 ​ 查询的内容: 区 ...

  8. 2018.09.30 bzoj2821: 作诗(Poetize)(分块)

    传送门 分块经典题目. 先将数列分块. 然后预处理出每两个块之间有多少个数出现了正偶数次. 这样查询的时候对于中间的完整块直接用预处理出的数组搞定. 剩下的暴力枚举求解. 代码: #include&l ...

  9. [BZOJ2821]作诗(分块)

    题意 N个数,M组询问,每次问[l,r]中有多少个数出现正偶数次对于100%的数据,1≤n,c,m≤105 题解 (传说lyd省选的时候看错题   把题看成这个了   从此又多了一道分块神题)把N个数 ...

随机推荐

  1. 一分钟了解spark的调优

    Tuning Spark 数据序列化 内存调优 内存管理概述 确定内存消耗 调整数据结构 序列化 RDD 存储 垃圾收集调整 其他注意事项 并行度水平 减少任务的内存使用 广播大的变量 数据本地化 概 ...

  2. Mysql忘记密码处理办法

    找回密码的步骤如下: 1.停止mysql服务器 sudo /opt/lampp/lampp stopmysql 2.使用`--skip-grant-tables' 参数来启动 mysqld sudo ...

  3. 怎样从Java转换到Kotlin代码:现在就开始使用Kotlin(KAD 29)

    作者:Antonio Leiva 时间:Jul, 4, 2017 原文链接:https://antonioleiva.com/kotlin-from-java/ Kotlin最神奇特性之一是它能与Ja ...

  4. 完整的正则表达式知识汇总(Python知识不断更新)

    ## 大纲: ## 一.正则概述 1.正则是什么 正则就是一套规则,或者语法 2.正则的作用 让我们判断是否符合我们的的规则,或者根据规则找到符合规则的数据 3.使用场景 可以用正则判断我们输入的邮箱 ...

  5. 【movable-area、movable-view】 可移动区域组件说明

    movable-area.movable-view 可移动区域组件 原型: <movable-area scale-area="[Boolean]"> <mova ...

  6. (原) MaterialEditor部- UmateriaEditor中 Node编译过程和使用(3)修正

    @author: 白袍小道 转载说明原处,爱护劳动 插件同步在GITHUB: DaoZhang_XDZ         说明 1.本篇是接着-----(原) MaterialEditor部- Umat ...

  7. visionpro9.0破解

    visionpro9.0软件下载 提供一个visionpro9.0视频教程学习网站:点击下面链接进入. ------------------------Halcon,Visionpro高清视频教程,点 ...

  8. 简单构建基于RDF和SPARQL的KBQA(知识图谱问答系统)

    本文主要通过python实例讲解基于RDF和SPARQL的KBQA系统的构建.该项目可在python2和python3上运行通过. 注:KBQA即是我们通常所说的基于知识图谱的问答系统.这里简单构建的 ...

  9. c# html 导出word

    [CustomAuthorize]        public FileResult ExportQuestionCenterWord(SearchBaseQuestion search)       ...

  10. HADOOP (十一).安装hbase

    下载安装包并解压设置hbase环境变量配置hbase-site.xml启动hbase检测hbase启动情况测试hbase shell 下载安装包并解压 https://mirrors.tuna.tsi ...