应该可以看出这是个很normal的斜率优化式子。推出公式搞一搞即可。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int a[N], que[N], head, tail, A, B, C;
LL dp[N], sum[N]; bool check(int x, int y, int z){
return dp[x]-dp[y]+A*(sum[x]*sum[x]-sum[y]*sum[y])>=(*A*sum[z]+B)*(sum[x]-sum[y]);
}
bool sol(int x, int y, int z){
return (dp[x]-dp[y]+A*(sum[x]*sum[x]-sum[y]*sum[y]))*(sum[y]-sum[z])>=(dp[y]-dp[z]+A*(sum[y]*sum[y]-sum[z]*sum[z]))*(sum[x]-sum[y]);
}
int main ()
{
int n;
scanf("%d%d%d%d",&n,&A,&B,&C);
FOR(i,,n) scanf("%d",a+i), sum[i]=sum[i-]+a[i];
head=-; tail=; que[++head]=;
FOR(i,,n) {
while (head>tail&&check(que[tail+],que[tail],i)) ++tail;
int v=que[tail];
dp[i]=dp[v]+A*(sum[i]-sum[v])*(sum[i]-sum[v])+B*(sum[i]-sum[v])+C;
while (head>tail&&sol(i,que[head],que[head-])) --head;
que[++head]=i;
}
printf("%lld\n",dp[n]);
return ;
}

BZOJ 1911 特别行动队(斜率优化DP)的更多相关文章

  1. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

  2. bzoj1911 [Apio2010]特别行动队——斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...

  3. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  4. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  5. [APIO2010]特别行动队 --- 斜率优化DP

    [APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...

  6. APIO 2010 特别行动队 斜率优化DP

    Description 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 (i ...

  7. luogu3628 特别行动队 (斜率优化dp)

    推出来式子以后斜率优化水过去就完事了 #include<cstdio> #include<cstring> #include<algorithm> #include ...

  8. 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP

    想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...

  9. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

随机推荐

  1. Node.js Express+Mongodb 项目实战

    Node.js Express+Mongodb 项目实战 这是一个简单的商品管理系统的小项目,包含的功能还算挺全的,项目涵盖了登录.注册,图片上传以及对商品进行增.删.查.改等操作,对于新手来说是个很 ...

  2. BZOJ1800_fly飞行棋_KEY

    题目传送门 看数据范围,N<=20! 你没看错,搜索都能过. O(N^2)的做法,就是先求出有几对点之间的距离为圆周长的一半. 然后求C(N,2)即可. code: /************* ...

  3. 全球订单最多的成都优步推出"南北通勤线"业务

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. P2351 [SDOi2012]吊灯

    P2351 [SDOi2012]吊灯 https://www.luogu.org/problemnew/show/P2351     题意: 一棵树,能否全部分成大小为x的联通块. 分析: 显然x是n ...

  5. Java:String、StringBuffer、StringBuilder

    一.String 1. String类是final类,意味着String类不能被继承,它的成员方法都默认为final方法.在早期的JVM版本中,被final修饰的方法会转为内嵌调用来提升执行效率.从J ...

  6. Kafka在高并发的情况下,如何避免消息丢失和消息重复?kafka消费怎么保证数据消费一次?数据的一致性和统一性?数据的完整性?

    1.kafka在高并发的情况下,如何避免消息丢失和消息重复? 消息丢失解决方案: 首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的 ...

  7. caffe Mac 安装

    参考了 https://zhuanlan.zhihu.com/p/24853767 安装caffe的依赖项 brew install --fresh -vd snappy leveldb gflags ...

  8. C++11 type_traits 之is_convertible源码分析

    请看源码: struct __sfinae_types { typedef char __one; typedef ]; } __two; }; template<typename _From, ...

  9. [转]Excel数据转化为sql脚本

    在实际项目开发中,有时会遇到客户让我们把大量Excel数据导入数据库的情况.这时我们就可以通过将Excel数据转化为sql脚本来批量导入数据库. 1 在数据前插入一列单元格,用来拼写sql语句. 具体 ...

  10. java常见的异常类型

    Exception分为两类:非运行是异常和运行时异常. java编译器要求方法必须声明抛出可能发生的非运行时异常,但是并不要求必须声明抛出未被捕获的运行时异常.A:NullPointerExcepti ...