Linux之同步互斥阻塞20160703
主要介绍一下Linux下的互斥与阻塞方面的知识:
1. 原子操作
原子操作指的是在执行过程中不会被别的代码路径所中断的操作。
常用原子操作函数举例:
atomic_t v = ATOMIC_INIT(0); //定义原子变量v并初始化为0
atomic_read(atomic_t *v); //返回原子变量的值
void atomic_inc(atomic_t *v); //原子变量增加1
void atomic_dec(atomic_t *v); //原子变量减少1
int atomic_dec_and_test(atomic_t *v); //自减操作后测试其是否为0,为0则返回true,否则返回false。
2. 信号量
信号量(semaphore)是用于保护临界区的一种常用方法,只有得到信号量的进程才能执行临界区代码。
当获取不到信号量时,进程进入休眠等待状态。
定义信号量
struct semaphore sem;
初始化信号量
void sema_init (struct semaphore *sem, int val);
void init_MUTEX(struct semaphore *sem);//初始化为0
static DECLARE_MUTEX(button_lock); //定义互斥锁
获得信号量
void down(struct semaphore * sem);
int down_interruptible(struct semaphore * sem);
int down_trylock(struct semaphore * sem);
释放信号量
void up(struct semaphore * sem);
3. 阻塞
阻塞操作
是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后再进行操作。
被挂起的进程进入休眠状态,被从调度器的运行队列移走,直到等待的条件被满足。
非阻塞操作
进程在不能进行设备操作时并不挂起,它或者放弃,或者不停地查询,直至可以进行操作为止。
fd = open("...", O_RDWR | O_NONBLOCK);
示例代码:
1.应用程序:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
/* sixthdrvtest
*/
int fd;
void my_signal_fun(int signum)
{
unsigned char key_val;
read(fd, &key_val, 1);
printf("key_val: 0x%x\n", key_val);
}
int main(int argc, char **argv)
{
unsigned char key_val;
int ret;
int Oflags;
//signal(SIGIO, my_signal_fun);
fd = open("/dev/buttons", O_RDWR | O_NONBLOCK);
if (fd < 0)
{
printf("can't open!\n");
return -1;
}
//fcntl(fd, F_SETOWN, getpid());
//Oflags = fcntl(fd, F_GETFL);
//fcntl(fd, F_SETFL, Oflags | FASYNC);
while (1)
{
ret = read(fd, &key_val, 1);
printf("key_val: 0x%x, ret = %d\n", key_val, ret);
sleep(5);
}
return 0;
}
2.驱动程序:
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
#include <asm/hardware.h>
#include <linux/poll.h>
static struct class *sixthdrv_class;
static struct class_device *sixthdrv_class_dev;
volatile unsigned long *gpfcon;
volatile unsigned long *gpfdat;
volatile unsigned long *gpgcon;
volatile unsigned long *gpgdat;
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);
/* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */
static volatile int ev_press = 0;
static struct fasync_struct *button_async;
struct pin_desc{
unsigned int pin;
unsigned int key_val;
};
/* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */
/* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */
static unsigned char key_val;
struct pin_desc pins_desc[4] = {
{S3C2410_GPF0, 0x01},
{S3C2410_GPF2, 0x02},
{S3C2410_GPG3, 0x03},
{S3C2410_GPG11, 0x04},
};
//static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1
static DECLARE_MUTEX(button_lock); //定义互斥锁
/*
* 确定按键值
*/
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
struct pin_desc * pindesc = (struct pin_desc *)dev_id;
unsigned int pinval;
pinval = s3c2410_gpio_getpin(pindesc->pin);
if (pinval)
{
/* 松开 */
key_val = 0x80 | pindesc->key_val;
}
else
{
/* 按下 */
key_val = pindesc->key_val;
}
ev_press = 1; /* 表示中断发生了 */
wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */
kill_fasync (&button_async, SIGIO, POLL_IN);
return IRQ_RETVAL(IRQ_HANDLED);
}
static int sixth_drv_open(struct inode *inode, struct file *file)
{
#if 0
if (!atomic_dec_and_test(&canopen))
{
atomic_inc(&canopen);
return -EBUSY;
}
#endif
if (file->f_flags & O_NONBLOCK)
{
if (down_trylock(&button_lock))
return -EBUSY;
}
else
{
/* 获取信号量 */
down(&button_lock);
}
/* 配置GPF0,2为输入引脚 */
/* 配置GPG3,11为输入引脚 */
request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]);
request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]);
request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]);
request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]);
return 0;
}
ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
if (size != 1)
return -EINVAL;
if (file->f_flags & O_NONBLOCK)
{
if (!ev_press)
return -EAGAIN;
}
else
{
/* 如果没有按键动作, 休眠 */
wait_event_interruptible(button_waitq, ev_press);
}
/* 如果有按键动作, 返回键值 */
copy_to_user(buf, &key_val, 1);
ev_press = 0;
return 1;
}
int sixth_drv_close(struct inode *inode, struct file *file)
{
//atomic_inc(&canopen);
free_irq(IRQ_EINT0, &pins_desc[0]);
free_irq(IRQ_EINT2, &pins_desc[1]);
free_irq(IRQ_EINT11, &pins_desc[2]);
free_irq(IRQ_EINT19, &pins_desc[3]);
up(&button_lock);
return 0;
}
static unsigned sixth_drv_poll(struct file *file, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait); // 不会立即休眠
if (ev_press)
mask |= POLLIN | POLLRDNORM;
return mask;
}
static int sixth_drv_fasync (int fd, struct file *filp, int on)
{
printk("driver: sixth_drv_fasync\n");
return fasync_helper (fd, filp, on, &button_async);
}
static struct file_operations sencod_drv_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
.open = sixth_drv_open,
.read = sixth_drv_read,
.release = sixth_drv_close,
.poll = sixth_drv_poll,
.fasync = sixth_drv_fasync,
};
int major;
static int sixth_drv_init(void)
{
major = register_chrdev(0, "sixth_drv", &sencod_drv_fops);
sixthdrv_class = class_create(THIS_MODULE, "sixth_drv");
sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */
gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
gpfdat = gpfcon + 1;
gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16);
gpgdat = gpgcon + 1;
return 0;
}
static void sixth_drv_exit(void)
{
unregister_chrdev(major, "sixth_drv");
class_device_unregister(sixthdrv_class_dev);
class_destroy(sixthdrv_class);
iounmap(gpfcon);
iounmap(gpgcon);
return 0;
}
module_init(sixth_drv_init);
module_exit(sixth_drv_exit);
MODULE_LICENSE("GPL");
最后附笔者学习笔记:


Linux之同步互斥阻塞20160703的更多相关文章
- 入门级的按键驱动——按键驱动笔记之poll机制-异步通知-同步互斥阻塞-定时器防抖
文章对应视频的第12课,第5.6.7.8节. 在这之前还有查询方式的驱动编写,中断方式的驱动编写,这篇文章中暂时没有这些类容.但这篇文章是以这些为基础写的,前面的内容有空补上. 按键驱动——按下按键, ...
- Linux中同步互斥机制研究之原子操作
操作系统中,对共享资源的访问需要有同步互斥机制来保证其逻辑的正确性,而这一切的基础便是原子操作. | 原子操作(Atomic Operations): 原子操作从定义上理解,应当是类似原子的,不 ...
- Linux IO 同步/异步 阻塞/非阻塞
同步IO:导致请求进程阻塞,直到IO操作完成: 是内核通知我们何时进行启动IO操作,而实际的IO操作需要当前进程本身阻塞完成: 包括:阻塞式IO模型,非阻塞式IO模型,IO复用模型,信号驱动式IO模型 ...
- Linux多线程(三)(同步互斥)
1. 线程的同步与互斥 1.1. 线程的互斥 在Posix Thread中定义了一套专门用于线程互斥的mutex函数.mutex是一种简单的加锁的方法来控制对共享资源的存取,这个互斥锁只有两种状态(上 ...
- 【Linux】Mutex互斥量线程同步的例子
0.互斥量 Windows下的互斥量 是个内核对象,每次WaitForSingleObject和ReleaseMutex时都会检查当前线程ID和占有互斥量的线程ID是否一致. 当多次Wait**时就 ...
- Linux同步互斥(Peterson算法,生产者消费者模型)
同步 两个或两个以上随时间变化的量在变化过程中保持一定的相对关系. 互斥 对一组并发进程,一次只有一个进程能够访问一个给定的资源或执行一个给定的功能. 互斥技术可以用于解决诸如资源争用之类的冲突,还可 ...
- Linux中同步与异步、阻塞与非阻塞概念以及五种IO模型
1.概念剖析 相信很多从事linux后台开发工作的都接触过同步&异步.阻塞&非阻塞这样的概念,也相信都曾经产生过误解,比如认为同步就是阻塞.异步就是非阻塞,下面我们先剖析下这几个概念分 ...
- Linux下同步模式、异步模式、阻塞调用、非阻塞调用总结
转自:http://www.360doc.com/content/13/0117/12/5073814_260691714.shtml 同步和异步:与消息的通知机制有关. 本质区别 现实例子 同步模式 ...
- Linux多线程同步方式
当多个线程共享相同的内存时,需要确保每个线程看到一致的数据视图,当多个线程同时去修改这片内存时,就可能出现偏差,得到与预期不符合的值.为啥需要同步,一件事情逻辑上一定是有序的,即使在并发环境下:而操作 ...
随机推荐
- JavaScript基本概念(1)-声明提升
声明提升: function > var > other var提升的时候,只是声明提升,但是赋值还是会在原来的位置. Javascript Hoisting:In javascript, ...
- 41. Maximum Subarray
Description Given an array of integers, find a contiguous subarray which has the largest sum. The su ...
- 爬虫1.6-selenium+HeadlessChrome
目录 爬虫-selenium+HeadlessChrome 1. 浏览器处理步骤 2. headless-chrome初体验 3. 实战爬取淘宝镇.街道信息 爬虫-selenium+HeadlessC ...
- spark相关脚本解析
spark-shell/spark-submit/pyspark等关系如下: #spark-submit 逻辑: ########################################### ...
- 基础数据类型-set
Set是无序不重复元素的序列,基本功能是删除重复元素和测试成员关系, 创建一个集合可以用set()或者({}),但是创建一个空集合只能用set(): s1 = set() print("s1 ...
- POJ 3845 Fractal(计算几何の旋转缩放)
Description Fractals are really cool mathematical objects. They have a lot of interesting properties ...
- Nodejs中关于模块的总结
关于Nodejs中的模块 概念 Nodejs在ECMAScript的基础上扩展并封装了许多高级特性,如文件访问.网络访问等,使得Nodejs成为一个很好的Web开发平台.基于Nodejs这个平台将We ...
- 《梦断代码Dreaming In Code》阅读计划
书籍是人类宝贵的精神财富,读书是人们重要的学习方式,是人生奋斗的航灯,是文化传承的通道,是人类进步的阶梯.学生作为学习人群的主体,必须把读书作为头等大事.学校就是一个学生在教师指导下自主读书的空间,而 ...
- 用URL传参带特殊字符,特殊字符丢失
文章:URL中编码URL特殊字符 文章:用URL传参带特殊字符,特殊字符丢失(encode) 如果url中有特殊字符,需要对url进行编码,否则特殊字符丢失,导致最终接收到的值不对.
- 用 C# 实现文件信息统计(wc)命令行程序
软件的需求分析 程序处理用户需求的模式为: wc.exe [parameter][filename] 在[parameter]中,用户通过输入参数与程序交互,需实现的功能如下: 1.基本功能 支持 - ...