sunos kernel src leakrs
https://github.com/joede/libezV24
https://github.com/ysei/siriusSparcV8
https://github.com/omniti-labs/svr42pkgsrc
https://github.com/Sunshine-OS/svr4-dev
https://github.com/Sunshine-OS/svr4-userland
https://github.com/Sunshine-OS/pkg-gate
https://github.com/OS2World/DEV-MISC-GNU_m4
https://github.com/ArchC/sparc
https://github.com/shoyos420/Sparcv8
https://github.com/SparcV8/SparcV8
https://github.com/cgutierr3z/sparcv8-monocycle
https://github.com/grgbr/qemu-sparcv8
https://github.com/Shipaaaa/DebugMonitor
https://github.com/adhuliya/sparcv8-ajit
https://github.com/carriercomm/qemu-tcg-sparcv8plus
https://github.com/Rajmohan/UnixV6
https://github.com/ngn999/UNIX-System-V
https://github.com/Ngoguey42/proj20_unix_lem-ipc
https://github.com/huangguiyang/UnixV6-CC
https://github.com/us8945/Unix_v6_filesystem
https://github.com/ie925155/unix-file-system-v6
https://github.com/iamjy/unix_v6
https://github.com/zhangchi8620/vShell
https://github.com/WarlockD/arm-cortex-v7-unix
https://github.com/geocar/ed-v6
https://github.com/Murii/mu-version-control-system
https://github.com/bcsefercik/virtual-memory-and-file-system
https://github.com/strook/wine-dev-x86_64
https://github.com/dybiszb/NetworkScrabble
https://github.com/cwru-eecs338/smokers
https://github.com/bmarcot/vega
https://github.com/tomm1990/Video-Control-for-A-Smart-Home-Environment
https://github.com/djarosz/vsftpd
https://github.com/ppciarravano/volatile-bulletin-board
https://github.com/SOYJUN/Application-with-raw-IP-sockets
https://github.com/tallpants/vtu-usp-lab
https://github.com/Ngoguey42/proj01_algo_libft
https://github.com/thisisnotabug/libftui
sunos kernel src leakrs的更多相关文章
- sunos kernel src
https://github.com/eocallaghan/AuroraUX-SunOS https://github.com/zoyanhui/coroutine-libtask https:// ...
- 关于kernel-devel、kernel-header和kernel src的区别
A kernel-header package would contain 'header files' needed by some applications which would be buil ...
- Linux ARM kernel Makefile and Kconfig
kernel build:顶层Makefile:-->1. include build/main.mk -->2. include build/kernel.mk k ...
- andriod Kernel configuration is invalid
error: ERROR: Kernel configuration is invalid. include/generated/autoconf.h or include/conf ...
- Linux Kernel的Makefile与Kconfig文件的语法
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt Introduction ------------ The c ...
- linux driver error ------ 编译驱动出现 ERROR: Kernel configuration is invalid
ERROR: Kernel configuration is invalid. include/generated/autoconf.h or include/config/au ...
- Linux Kernel Makefiles Kbuild en
来自Linux kernel docs,顺便整理了一下排版 Linux Kernel Makefiles This document describes the Linux kernel Makefi ...
- seL4之hello-3征途
seL4之hello-3征途 回顾上周 了解seL4的启动流程和初始化线程 了解seL4的几种内核对象和权能机制 完成hell0-2的运行. 补充上周 1.找到根任务(初始化线程)的创建具体的位置(那 ...
- linux内核的makefile.txt讲解
linux内核的linux-3.6.5\Documentation\kbuild\makefiles.txt Linux Kernel Makefiles This document describe ...
随机推荐
- 转:狄利克雷过程(dirichlet process )的五种理解
狄利克雷过程(dirichlet process )的五种理解 原文:http://blog.csdn.net/xianlingmao/article/details/7342837 无参数贝叶 ...
- 【刷题】BZOJ 3175 [Tjoi2013]攻击装置
Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照"日"字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1), ...
- [洛谷P4999]烦人的数学作业
题目大意:定义$f(x)$表示$x$每一个数位(十进制)的数之和,求$\sum\limits_{i=l}^rf(i)$,多组询问. 题解:数位$DP$,可以求出每个数字的出现个数,再乘上每个数字的大小 ...
- [NOIP2010] 引水入城 贪心 + 记忆化搜索
---题面--- 题解: 本蒟蒻并没有想到bfs的做法,,,, 只会dfs了 首先我们需要知道一个性质. 我们设k[i].l 为在i点建立水库可以支援到的最左边的城市,k[i].r为最右边的. 那么点 ...
- BZOJ5217:[Lydsy2017省队十连测]航海舰队——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5217 Byteasar 组建了一支舰队!他们现在正在海洋上航行着.海洋可以抽象成一张n×m 的网格 ...
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告
P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...
- HDU.3342 Legal or Not (拓扑排序 TopSort)
HDU.3342 Legal or Not (拓扑排序 TopSort) 题意分析 裸的拓扑排序 根据是否成环来判断是否合法 详解请移步 算法学习 拓扑排序(TopSort) 代码总览 #includ ...
- Android LayoutInflater深度解析
1. 题外话 相信大家对LayoutInflate都不陌生,特别在ListView的Adapter的getView方法中基本都会出现,使用inflate方法去加载一个布局,用于ListView的每个I ...
- 动态规划小结 - 一维动态规划 - 时间复杂度 O(n),题 [LeetCode] Jump Game,Decode Ways
引言 一维动态规划根据转移方程,复杂度一般有两种情况. func(i) 只和 func(i-1)有关,时间复杂度是O(n),这种情况下空间复杂度往往可以优化为O(1) func(i) 和 func(1 ...
- js:鼠标移动到文字显示div,移出文字div显示,鼠标能移进div
<!DOCTYPE html><html lang="en"> <head> <meta charset="UTF-8" ...