这道题就是道状压dp...比赛的时候太贪心 然后状压又不好 所以T2 T3一起挂了QAQ 吸取教训QAQ

f[i][j][k]表示前i个数选了j个 最后a个的状态为k的答案

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using std::swap;
const int M=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,m,a,b,k,ly;
int v[M],sz[M];
int f[][][],y,w[],val[],ans;
int max(int a,int b){return a>b?a:b;}
void maxs(int&a,int b){if(a<b) a=b;}
int main(){
n=read(); m=read(); a=read(); b=read();
for(int i=;i<=n;i++) v[i]=read();
for(int i=;i<=b;i++){
k=read(); y=read();
int s=;
for(int j=;j<=k;j++) ly=read(),s|=(<<(a-ly));
w[s]+=y;
}
int now=,last=,tot=<<a;
for(int i=;i<tot;i++) for(int x=i;x;x=(x-)&i) val[i]+=w[x];
memset(f[now],-0x3f,sizeof(f[now]));
for(int s=;s<tot;s++){
int x=val[s];
int sz=;
for(int i=;i<a;i++)if((s>>i)&) sz++,x+=v[a-i];
f[now][sz][s]=x;
}
for(int i=a+;i<=n;i++){
swap(now,last);
memset(f[now],-0x3f,sizeof(f[now]));
for(int j=;j<=m;j++)
for(int s=;s<tot;s++)
maxs(f[now][j+(s&)][s],max(f[last][j][s>>],f[last][j][s>>|<<(a-)])+val[s]+(s&)*v[i]);
}
for(int s=;s<(<<a);s++) for(int j=;j<=m;j++) maxs(ans,f[now][j][s]);
printf("%d\n",ans);
return ;
}

洛谷金秋夏令营模拟赛 第2场 T11737 时之终末的更多相关文章

  1. 洛谷金秋夏令营模拟赛 第2场 T11738 伪神

    调了一个下午只有八十分QAQ md弃了不管了 对拍也没拍出来 鬼知道是什么数据把我卡了QAQ 没事我只是个SB而已 这题其实还是蛮正常的 做法其实很简单 根据链剖的构造方法 你每次修改都是一段又一段的 ...

  2. 洛谷 P5046 [Ynoi2019 模拟赛] Yuno loves sqrt technology I(分块+卡常)

    洛谷题面传送门 zszz,lxl 出的 DS 都是卡常题( 首先由于此题强制在线,因此考虑分块,我们那么待查询区间 \([l,r]\) 可以很自然地被分为三个部分: 左散块 中间的整块 右散块 那么这 ...

  3. 洛谷CON1041 NOIP模拟赛一试

    A T2-power of 2 题目描述 是一个十分特殊的式子. 例如: n=0时 =2 然而,太大了 所以,我们让对10007 取模 输入输出格式 输入格式: n 输出格式:  % 10007 输入 ...

  4. [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...

  5. 【洛谷】xht模拟赛 题解

    前言 大家期待已久并没有的题解终于来啦~ 这次的T1和HAOI2016撞题了...深表歉意...表示自己真的不知情... 天下的水题总是水得相似,神题各有各的神法.--<安娜·卡列妮娜> ...

  6. 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)

    传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...

  7. [洛谷0925]NOIP模拟赛 个人公开赛 OI

     P3395 路障 题目背景 此题约为NOIP提高组Day1T1难度. 题目描述 B君站在一个n*n的棋盘上.最开始,B君站在(1,1)这个点,他要走到(n,n)这个点. B君每秒可以向上下左右的某个 ...

  8. 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)

    题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...

  9. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

随机推荐

  1. 针对XX系统的可用性和易用性构想

    可用性是与系统故障有关的一个质量属性,是指系统正常运行的时间的比例,一般通过两次故障之间的时间长度或在系统崩溃情况下能恢复正常运行的速度来衡量,同时此概念涉及一个公式的计算,就是系统正常运行时间的百分 ...

  2. [codecademy]html&css

    1. HTML is the language used to create the web pages you visit everyday. It provides a logical way t ...

  3. Java中I/O流之数据流

    Java 中的数据流: 对于某问题:将一个 long 类型的数据写到文件中,有办法吗?    转字符串 → 通过 getbytes() 写进去,费劲,而且在此过程中 long 类型的数需要不断地转换. ...

  4. LintCode-50.数组剔除元素后的乘积

    数组剔除元素后的乘积 给定一个整数数组A. 定义B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], 计算B的时候请不要使用除法. 样例 给出A=[1 ...

  5. PHP利用pcntl_exec突破disable_functions

    http://fuck.0day5.com/?p=563 PHP突破Disable_functions执行Linux命令 利用dl函数突破disable_functions执行命令 http://ww ...

  6. iOS- 多线程技术的概述及优点

    1.概述 在iOS开发中: •耗时操作,例如网络图片.视频.歌曲.书籍等资源下载 •游戏中的声音播放   我们可以利用多线程: •充分发挥多核处理器的优势,并发(同时执行)执行任务让系统运行的更快.更 ...

  7. 简单理解SQL Server锁机制

    多个用户同时对数据库的并发操作时,可能会遇到下面几种情况,导致数据前后不一致: 1,A.B事务同时对同一个数据进行修改,后提交的人的修改结果会破坏先提交的(丢失更新): 2,事务A修改某一条数据还未提 ...

  8. 【Linux】- Ubuntu安装nginx

    安装 执行命令: sudo apt-get install nginx 执行如图: 防火墙设置 查看防火墙状态: sudo ufw status 查看可以穿过防火墙的应用列表: sudo ufw ap ...

  9. [剑指Offer] 65.矩阵中的路径

    题目描述 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子.如果一条路径经过了矩阵中 ...

  10. 【python】 requirements使用方法

    记得导入导出包的时候要想激活虚拟环境.1.导出requirements方法pip freeze > requirements.txt 2.安装requirements方法pip install ...