这道题就是道状压dp...比赛的时候太贪心 然后状压又不好 所以T2 T3一起挂了QAQ 吸取教训QAQ

f[i][j][k]表示前i个数选了j个 最后a个的状态为k的答案

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using std::swap;
const int M=;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,m,a,b,k,ly;
int v[M],sz[M];
int f[][][],y,w[],val[],ans;
int max(int a,int b){return a>b?a:b;}
void maxs(int&a,int b){if(a<b) a=b;}
int main(){
n=read(); m=read(); a=read(); b=read();
for(int i=;i<=n;i++) v[i]=read();
for(int i=;i<=b;i++){
k=read(); y=read();
int s=;
for(int j=;j<=k;j++) ly=read(),s|=(<<(a-ly));
w[s]+=y;
}
int now=,last=,tot=<<a;
for(int i=;i<tot;i++) for(int x=i;x;x=(x-)&i) val[i]+=w[x];
memset(f[now],-0x3f,sizeof(f[now]));
for(int s=;s<tot;s++){
int x=val[s];
int sz=;
for(int i=;i<a;i++)if((s>>i)&) sz++,x+=v[a-i];
f[now][sz][s]=x;
}
for(int i=a+;i<=n;i++){
swap(now,last);
memset(f[now],-0x3f,sizeof(f[now]));
for(int j=;j<=m;j++)
for(int s=;s<tot;s++)
maxs(f[now][j+(s&)][s],max(f[last][j][s>>],f[last][j][s>>|<<(a-)])+val[s]+(s&)*v[i]);
}
for(int s=;s<(<<a);s++) for(int j=;j<=m;j++) maxs(ans,f[now][j][s]);
printf("%d\n",ans);
return ;
}

洛谷金秋夏令营模拟赛 第2场 T11737 时之终末的更多相关文章

  1. 洛谷金秋夏令营模拟赛 第2场 T11738 伪神

    调了一个下午只有八十分QAQ md弃了不管了 对拍也没拍出来 鬼知道是什么数据把我卡了QAQ 没事我只是个SB而已 这题其实还是蛮正常的 做法其实很简单 根据链剖的构造方法 你每次修改都是一段又一段的 ...

  2. 洛谷 P5046 [Ynoi2019 模拟赛] Yuno loves sqrt technology I(分块+卡常)

    洛谷题面传送门 zszz,lxl 出的 DS 都是卡常题( 首先由于此题强制在线,因此考虑分块,我们那么待查询区间 \([l,r]\) 可以很自然地被分为三个部分: 左散块 中间的整块 右散块 那么这 ...

  3. 洛谷CON1041 NOIP模拟赛一试

    A T2-power of 2 题目描述 是一个十分特殊的式子. 例如: n=0时 =2 然而,太大了 所以,我们让对10007 取模 输入输出格式 输入格式: n 输出格式:  % 10007 输入 ...

  4. [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...

  5. 【洛谷】xht模拟赛 题解

    前言 大家期待已久并没有的题解终于来啦~ 这次的T1和HAOI2016撞题了...深表歉意...表示自己真的不知情... 天下的水题总是水得相似,神题各有各的神法.--<安娜·卡列妮娜> ...

  6. 洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)

    传送门 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 用蒲公英那个分块的方法做结果两天没卡过去→_→ 首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素 整块的答案很简 ...

  7. [洛谷0925]NOIP模拟赛 个人公开赛 OI

     P3395 路障 题目背景 此题约为NOIP提高组Day1T1难度. 题目描述 B君站在一个n*n的棋盘上.最开始,B君站在(1,1)这个点,他要走到(n,n)这个点. B君每秒可以向上下左右的某个 ...

  8. 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)

    题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...

  9. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

随机推荐

  1. c#笔记整理 关于继承与多态等

    [ 塔 · 第 二 条 约 定 ] c#面向对象基础 整理private.protected.public.abstract等的异同 public 公有访问.不受任何限制. private 私有访问. ...

  2. lintcode-11-二叉查找树中搜索区间

    二叉查找树中搜索区间 给定两个值 k1 和 k2(k1 < k2)和一个二叉查找树的根节点.找到树中所有值在 k1 到 k2 范围内的节点.即打印所有x (k1 <= x <= k2 ...

  3. phpshell提权

    实际操作中可以在webshell用udf.dll提权,用函数的上传文件功能上传文件到启动目录,再用shut函数重起系统.(目前没成功过,有 机会本地测试一下,先记录在这了).如果是英文版的系统,启动目 ...

  4. PokeCats开发者日志(十二)

      现在是PokeCats游戏开发的第六十一天的晚上,终于拿到软著权登记证书了!   看来易版权确实是个值得信赖的代办机构呢,400块花的不冤.

  5. Python运算符与编码

    阅读目录 while 循环 运算符 编码的问题 单位转换 整数 布尔值 while 循环 在生活中,我们遇到过循环的事情吧?比如循环听歌.在程序中,也是存才的,这就是流程控制语句 while 1.基本 ...

  6. BZOJ 2306 幸福路径(DP)

    题解来源:http://www.cnblogs.com/jianglangcaijin/p/3799494.html 最后必然是走了一条链,或者是一个环(一直绕),或者是一条链加一个环.设f[i][j ...

  7. AC自动机裸题

    HDU 2222 Keywords Search 模板题.对模式串建立AC自动机然后在trie树上找一遍目标串即可. # include <cstdio> # include <cs ...

  8. hadoop MapReduce辅助排序解析

    1.数据样本,w1.csv到w5.csv,每个文件数据样本2000条,第一列是年份从1990到2000随机,第二列数据从1-100随机,本例辅助排序目标是找出每年最大值,实际上结果每年最大就是100, ...

  9. springboot2.0 快速集成kafka

    一.kafka搭建 参照<kafka搭建笔记> 二.版本 springboot版本 <parent> <groupId>org.springframework.bo ...

  10. [洛谷P3174][HAOI2009]毛毛虫

    题目大意:给一棵树,求其中最大的“毛毛虫”,毛毛虫的定义是一条链上分出几条边 题解:把每个点的权值定义为它的度数减一,跑带权直径即可,最后答案加二 卡点:无 C++ Code: #include &l ...