HDU 1695 GCD (欧拉函数,容斥原理)
GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9046 Accepted Submission(s): 3351
pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
2
1 3 1 5 1
1 11014 1 14409 9
Case 1: 9 Case 2: 736427 对于求x在1~n之间,y在1~m之间的gcd(x,y)=k; 就相当于求x在1~n/k之间,y在1~m/k之间的gcd(x,y)=1;即x,y互质的对数 对于欧拉函数,可以求比n小的和n互质的个数。 而容斥原理可以求1~指定范围,和n互质的个数。 所以我们枚举一个区间的数,然后求这个数在另一个区间的互质的个数。 容斥原理可以解决,但是为了学习熟悉欧拉函数,所以可以分成两段,一段用欧拉函数,另一段用容斥原理。 求解欧拉函数,可以用线性素数晒求解,这样同时打了一个素数表,为容斥原理服务#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <bitset> using namespace std;
typedef long long int LL;
#define MAX 1000000
bool check[MAX+5];
LL fai[MAX+5];
LL prime[MAX+5];
LL sprime[MAX+5];
LL q[MAX+5];
int cnt;
void eular()//线性筛求解欧拉函数
{
memset(check,false,sizeof(check));
fai[1]=1;
int tot=0;
for(int i=2;i<=MAX+5;i++)
{
if(!check[i])
{
prime[tot++]=i;
fai[i]=i-1;
}
for(int j=0;j<tot;j++)
{
if(i*prime[j]>MAX+5) break;
check[i*prime[j]]=true;
if(i%prime[j]==0)
{
fai[i*prime[j]]=fai[i]*prime[j];
break;
}
else
{
fai[i*prime[j]]=fai[i]*(prime[j]-1);
}
}
}
}
void Divide(LL n)//分解质因子
{
cnt=0;
LL t=(LL)sqrt(1.0*n);
for(LL i=0; prime[i]<=t; i++) {
if(n%prime[i]==0) {
sprime[cnt++]=prime[i];
while(n%prime[i]==0)
n/=prime[i];
}
}
if(n>1)
sprime[cnt++]=n;
}
LL Ex(LL n)//容斥原理之队列实现
{ LL sum=0;
LL t=1;
q[0]=-1;
for(LL i=0; i<cnt; i++) {
LL x=t;
for(LL j=0; j<x; j++){
q[t]=q[j]*sprime[i]*(-1);
t++;
}
}
for(LL i=1; i<t; i++)
sum+=n/q[i];
return sum;
}
int main()
{
int t;
scanf("%d",&t);
eular();
int cas=0;
int a,b,c,d,k;
while(t--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==0||k>b||k>d)
{
printf("Case %d: 0\n",++cas);
continue;
}
if(b>d) swap(b,d);
b/=k;d/=k;
LL ans=0;
for(int i=1;i<=b;i++)
ans+=fai[i];
for(int i=b+1;i<=d;i++)
{ Divide(i);ans+=(b-Ex(b));}
printf("Case %d: %lld\n",++cas,ans);
}
return 0; }
HDU 1695 GCD (欧拉函数,容斥原理)的更多相关文章
- hdu 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD 欧拉函数+容斥原理+质因数分解
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:在[a,b]中的x,在[c,d]中的y,求x与y的最大公约数为k的组合有多少.(a=1, a ...
- HDU 1695 GCD 欧拉函数+容斥定理
输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- hdu 1695 GCD 欧拉函数 + 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=1695 要求[L1, R1]和[L2, R2]中GCD是K的个数.那么只需要求[L1, R1 / K] 和 [L ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- [hdu1695] GCD ——欧拉函数+容斥原理
题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- HDU 1695 GCD (欧拉函数+容斥原理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
随机推荐
- C# nosql之redis初体验
Redis官方是不支持windows的,只是 Microsoft Open Tech group 在 GitHub上开发了一个Win64的版本,项目地址是: https://github.com/MS ...
- 解决Janusgraph索引状态不变更的问题
JanusGraph的索引因为要同步不同实例及不同后端的数据,因此不是实时能够完成的,视配置,网络和数据量不同,建立/生效索引通常需要一段时间,这也是为什么创建索引时会创建wait()的原因. 在实践 ...
- Oracle Restart能够用来给Oracle GoldenGate 做 High Availability 使用么?
Oracle Restart能够用来给Oracle GoldenGate 做 High Availability 使用么? 来源于: Can Oracle Restart be used with ...
- 多线程-synchronized
引言 synchronized是Java线程同步中的一个重要的概念,synchronized是独占锁(互斥锁),同时也是可重入锁(可重入锁一定程度上避免了死锁的问题,内部是关联一个计数器,加一次锁计数 ...
- Atitit. IE8.0 显示本地图片预览解决方案 img.src=本地图片路径无效的解决方案
Atitit. IE8.0 显示本地图片预览解决方案 img.src=本地图片路径无效的解决方案 1. IE8.0 显示本地图片 img.src=本地图片路径无效的解决方案1 1.1. div来完成 ...
- 所需即所获:像 IDE 一样使用 vim
所需即所获:像 IDE 一样使用 vim 转载 yangyangwithgnu@yeah.net2015-11-08 10:05:53 谢谢 捐赠:支付宝 yangyangwithgnu@yeah.n ...
- 阿里大鱼短信接口(Python3版)
近期由于须要用到短信接口,选型的的结果是用阿里大鱼的短信服务,然而淘宝开放平台(TOP)的SDK已经非常多年没有更新了.不支持python3.自己动手改了半天,还是不太正常,索性不用它,自己写一个算了 ...
- Java序列化与反序列化学习(三):序列化机制与原理
Java序列化算法透析 Serialization(序列化)是一种将对象以一连串的字节描述的过程:反序列化deserialization是一种将这些字节重建成一个对象的 过程.Java序列化API提供 ...
- 清理iOS中的“其他”空间垃圾文件
关于如何清理 iOS 里的"其他"空间的教程,网上搜索那是一大堆,不过都是对于2010年某坛某篇"技术文"的无数次简单复制粘帖,可行性已经被各路尝试者们踩到了地 ...
- android跨进程通信(IPC)——AIDL
转载请标明出处: http://blog.csdn.net/sinat_15877283/article/details/51026711: 本文出自: [温利东的博客] 近期在看 @任玉刚 大神编写 ...