前两天面试问到了PCA,感觉讲得不是很透彻,这里再次详细写一下。

首先定义如下变量的含义:

  X:Rn*m,n个样本m个属性,对于第i个样本xi:R1*m

  W:Rm*k,k个正交的单位正交的列向量组成的矩阵,投影矩阵,把原来的m维降到k维。对于第i个维度wi:Rm*1

  投影后的样本矩阵X' = X×W:Rn*k,对于投影后的第i个样本xi' = xi×W:R1*k

我们做PCA的目的是找出一个投影矩阵W(也就是k个单位向量)使得样本投影后的方差最大。其实理解了加粗的这句话,就已经对PCA有相当的了解了。如何理解方差最大?答:方差大说明投影后的样本之间相互分离程度比较好,相比于较小的方差,原样本的特征得到了有效保存。这个方差从数学上表示为投影到各个维度的方差之和

记住,作PCA之前要做的一件事是对原始样本矩阵X,按列中心化。比如对 Xij ==> Xij-M(j),其中M(j)表示第j列(也就是第j种属性)的均值。为什么要这么做?这是因为这个操作使得X每一列均值为0,可以大大简化后面计算方差的公式。(D(a)=E( (a-avg(a))·(a-avg(a)) ),如果avg(a)=0,那么D(a)=E(a^2))

对投影后的矩阵X' = X×W,因为X被我们按列中心化了,即∑xi=0,那么∑xi' = ∑ (xi×W) = (∑xi)×W = 0,也就是说投影后列均值为0的性质依然得到了保持。

接下来,我们考虑要优化的目标,方差。先考虑将所有样本投影到单个维度wi的情况,即X×wi:Rn*1,他表示这n个样本分别在这一个维度的坐标。

根据上面的分析,有∑ (xi×wi)=0,即E(X*wi)=0,(注意此处要把wi看成是定值)。于是就有了下面的推算:

对所有投影方向的方差进行求和,加上原来每个投影向量长度为1的约束,就得到了我们下面的优化问题。

由于是等式约束,我们很容易就可以写成拉格朗日形式如下,(λ前面漏掉了求和符号,sorry)

是的对wi求导,得到如下(由于λ是拉格朗日乘子,本身它的乘数不需要关心)

显然,△等式的wj和λ的解就是XTX做特征值分解对应的特征向量和特征值。

那么,有了特征值分解后,我们应该选哪些特征向量及其对应的特征值呢? 都知道是从最大的开始选,为什么呢?

对△等式进行简单变化,等式两边同时左乘wjT,变成下面的等式,

注意到,该等式说明了特征值λj对应的就是wj方向投影的方差,而我们的目标是要最大化所有的方差和。可选的范围是固定,显然我们从大的特征值开始选就行了。这就从数学上解释了为什么我们要从大的特征值开始进行选择(面试的时候问到了,当时只进行感性上的解释,确实没有这样列出来有说服力)。

还有一个trick要注意的是,如果给出了低维空间中的坐标,要复原在原空间的坐标时,要对每一个维度加上对应的均值,这是因为在做PCA之前进行了中心化处理。

怎么样? 是不是与书籍上的写法不一样呢?

详细且透彻的分析PCA原理的更多相关文章

  1. 主元分析PCA理论分析及应用

    首先,必须说明的是,这篇文章是完完全全复制百度文库当中的一篇文章.本人之前对PCA比较好奇,在看到这篇文章之后发现其对PCA的描述非常详细,因此迫不及待要跟大家分享一下,希望同样对PCA比较困惑的朋友 ...

  2. Kernel PCA 原理和演示

    Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的 ...

  3. 主成分分析(PCA)原理与实现

    主成分分析原理与实现   主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 \(n×m\)的矩阵转换成\(n×k\)的矩阵,仅保留矩阵中所存在的主要特性,从 ...

  4. PCA原理与实践

    在对数据进行预处理时,我们经常会遇到数据的维数非常之大,如果不进行相应的特征处理,那么算法的资源开销会很大,这在很多场景下是我们不能接受的.而对于数据的若干维度之间往往会存在较大的相关性,如果能将数据 ...

  5. 超详细的Guava RateLimiter限流原理解析

    超详细的Guava RateLimiter限流原理解析  mp.weixin.qq.com 点击上方“方志朋”,选择“置顶或者星标” 你的关注意义重大! 限流是保护高并发系统的三把利器之一,另外两个是 ...

  6. MyBatis 源码分析 - 缓存原理

    1.简介 在 Web 应用中,缓存是必不可少的组件.通常我们都会用 Redis 或 memcached 等缓存中间件,拦截大量奔向数据库的请求,减轻数据库压力.作为一个重要的组件,MyBatis 自然 ...

  7. Tomcat源码分析——请求原理分析(下)

    前言 本文继续讲解TOMCAT的请求原理分析,建议朋友们阅读本文时首先阅读过<TOMCAT源码分析——请求原理分析(上)>和<TOMCAT源码分析——请求原理分析(中)>.在& ...

  8. 机器学习之主成分分析PCA原理笔记

    1.    相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的 ...

  9. 降维算法----PCA原理推导

    1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1                                                             ...

随机推荐

  1. Objective-C GCD深入理解

    GCD(Grand Central Dispatch),主要用于多线程编程.它屏蔽了繁琐的线程实现及管理细节,将其交由系统处理.开发者只需要定义任务block(在底层被封装成dispatch_cont ...

  2. 吴恩达机器学习CS229课程笔记学习

    监督学习(supervised learning) 假设我们有一个数据集(dataset),给出居住面积和房价的关系如下: 我们以居住面积为横坐标,房价为纵坐标,组成数据点,如(2104, 400), ...

  3. 解决Skyline 6.5版本中3DML模型单体化后外部网页挂接问题

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  4. golang 转换markdown文件为html

    使用blackfriday go get -u gopkg.in/russross/blackfriday.v2 go: package markdown import ( "fmt&quo ...

  5. 【转】js 获取浏览器高度和宽度值(多浏览器

    原文地址:http://www.jb51.net/article/19844.htm js获取浏览器高度和宽度值,尽量的考虑了多浏览器. IE中: document.body.clientWidth ...

  6. SQL Server中的Merge关键字(转载)

    简介 Merge关键字是一个神奇的DML关键字.它在SQL Server 2008被引入,它能将Insert,Update,Delete简单的并为一句.MSDN对于Merge的解释非常的短小精悍:”根 ...

  7. BZOJ 4804: 欧拉心算

    数论题不多BB,直接开始推导吧: \(\sum_{i=1}^n \sum_{j=1}^n \phi(gcd(i,j))\) \(=\sum_{i=1}^n \sum_{j=1}^n \sum_{d=1 ...

  8. java 基础02 打包package

  9. 2011 noip 提高组

    首先吐槽:刚刚写着写着突然蓝屏了,,emmm,写到最后一题了蓝屏了. 当时我的内心是崩溃的. 然后,旁边的大佬默默来了一句:论保存草稿的重要性. 连着蓝了三次之后开了防火墙,然后,,我左边那位同学又开 ...

  10. Verilog对数据进行四舍五入(round)与饱和(saturation)截位

    转自https://www.cnblogs.com/liujinggang/p/10549095.html 一.软件平台与硬件平台 软件平台: 操作系统:Windows 8.1 64-bit 开发套件 ...