poj2115-C Looooops -线性同余方程
线性同余方程的模板题。和青蛙的约会一样。
#include <cstdio>
#include <cstring> #define LL long long using namespace std;
//A+n*C = B mod 2^k
//n*C = B-A mod 2^k LL A,B,C,MOD;
int k; LL ExGCD(LL a,LL b,LL &x,LL &y)
{
LL d,t;
if(b==)
{
x=;y=;
return a;
}
d = ExGCD(b,a%b,x,y);
t=x;x=y;y=t-a/b*y;
return d;
} int main()
{
while(scanf("%I64d%I64d%I64d%d",&A,&B,&C,&k) && (A||B||C||k))
{
LL x,y;
LL a=C,b=B-A;
MOD = 1LL<<k;
LL d = ExGCD(a,MOD,x,y);
if(b%d )
{
printf("FOREVER\n");
}
else
{
x=(x*(b/d))%MOD;
x=(x%(MOD/d)+MOD/d)%(MOD/d);
printf("%I64d\n",x);
}
}
}
poj2115-C Looooops -线性同余方程的更多相关文章
- POJ-2115-C Looooops(线性同余方程)
链接: https://vjudge.net/problem/POJ-2115 题意: A Compiler Mystery: We are given a C-language style for ...
- POJ2115 C Looooops(线性同余方程)
无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...
- POJ2115:C Looooops(一元线性同余方程)
题目: http://poj.org/problem?id=2115 要求: 会求最优解,会求这d个解,即(x+(i-1)*b/d)modm;(看最后那个博客的链接地址) 前两天用二元一次线性方程解过 ...
- POJ 2115 C Looooops (扩展欧几里德 + 线性同余方程)
分析:这个题主要考察的是对线性同余方程的理解,根据题目中给出的a,b,c,d,不难的出这样的式子,(a+k*c) % (1<<d) = b; 题目要求我们在有解的情况下求出最小的解,我们转 ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
- 数论 - n元线性同余方程的解法
note:n元线性同余方程因其编程的特殊性,一般在acm中用的很少,这里只是出于兴趣学了一下 n元线性同余方程的概念: 形如:(a1*x1+a2*x2+....+an*xn)%m=b%m ...
- POJ1061 青蛙的约会(线性同余方程)
线性同余方程$ ax \equiv b \pmod n$可以用扩展欧几里得算法求解. 这一题假设青蛙们跳t次后相遇,则可列方程: $$ Mt+X \equiv Nt+Y \pmod L$$ $$ (M ...
- poj2115 C Looooops(exgcd)
poj2115 C Looooops 题意: 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束. 若在有限次内结束,则输出循环次数. 否则输出死循环. ...
- 扩展欧几里得,解线性同余方程 逆元 poj1845
定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b) int exgcd(int a,int b,int &x,int &y){ ){x=,y=;return ...
随机推荐
- Attention[Content]
0. 引言 神经网络中的注意机制就是参考人类的视觉注意机制原理.即人眼在聚焦视野区域中某个小区域时,会投入更多的注意力到这个区域,即以"高分辨率"聚焦于图像的某个区域,同时以&qu ...
- java算法----排序----(6)希尔排序(最小增量排序)
package log; public class Test4 { /** * java算法---希尔排序(最小增量排序) * * @param args */ public static void ...
- BZOJ4883 棋盘上的守卫 基环树、Kruskal
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 题意:给出一个$N \times M$的棋盘,每个格子有权值.你需要每一行选中一 ...
- 使用yield返回IEnumber<T>集合
yield是对一种复杂行为的简化,就是将一段代码简化为一种简单的形式. 先看一下常规的写法,下面例子中,把找出字符串阵列中,某些元素包含有某些字符的元素. class Bi { public stri ...
- ASP.NET Core 登录失败。该登录名来自不受信任的域,不能与集成身份验证一起使用。
原文:ASP.NET Core 登录失败.该登录名来自不受信任的域,不能与集成身份验证一起使用. 当进行数据迁移的时候提示 修改appsettings配置连接串的Trusted_Connection ...
- 将WinForm程序(含多个非托管Dll)合并成一个exe的方法
原文:将WinForm程序(含多个非托管Dll)合并成一个exe的方法 开发程序的时候经常会引用一些第三方的DLL,然后编译生成的exe文件就不能脱离这些DLL独立运行了. ILMerge能把托管dl ...
- docker for windows 10 添加阿里云镜像仓库无效问题
原来一直是用cmd来执行docker 命令的,结果今天发现不行了,改了镜像仓库也pull不下来. 后来换用powerShell执行docker pull 才成功.大家可以试试 win+R 运行 po ...
- 洛谷 4823 [TJOI2013]拯救小矮人
题目链接-> 噔楞 题解: 贪心 按个高+臂长排序. 个矮臂长的先走,个高臂短的后走 #include <cstdio> #include <cstring> #incl ...
- Roslyn入门(一)-C#语法分析
演示环境 Visual Studio 2017 .NET Compiler Platform SDK 简介 今天,Visual Basic和C#编译器是黑盒子:输入文本然后输出字节,编译管道的中间阶段 ...
- JS 数据处理技巧及小算法汇总
前言: 金秋九月的最后一天,突然发现这个月博客啥也没更新,不写点什么总觉得这个月没啥长进,逆水行舟,不进则退,前进的路上贵在坚持,说好的每个月至少一到两篇,不能半途而废!好多知识写下来也能加深一下自身 ...