[CSAcademy]Sum of Powers

题目大意:

给定\(n,m,k(n,m,k\le4096)\)。一个无序可重集\(A\)为合法的,当且仅当\(|A|=m\)且\(\sum A_i=n\)。定义一个集合的贡献为\(\sum A_i^k\),求所有满足条件的集合的贡献之和。

思路:

\(f[i][j]\)表示将\(j\)个数之和为\(i\)的方案数,有如下两种转移:

  1. \(f[i][j]+=f[i-1][j-1]\),表示新加入一个元素\(1\);
  2. \(f[i][j]+=f[i-j][j]\),表示集合内每个元素\(+1\)。

可以证明这样就不重复、不遗漏地包含了所有的集合。

由于每个元素的贡献独立,最后枚举每种元素及其出现次数并计算贡献即可。

时间复杂度\(\mathcal O(nm)\)。

源代码:

#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=4097,mod=1e9+7;
int f[N][N];
inline int power(int a,int k) {
int ret=1;
for(;k;k>>=1) {
if(k&1) ret=1ll*ret*a%mod;
a=1ll*a*a%mod;
}
return ret;
}
int main() {
const int n=getint(),m=getint(),k=getint();
f[0][0]=1;
for(register int i=1;i<=n;i++) {
for(register int j=1;j<=m&&j<=i;j++) {
f[i][j]=(f[i-1][j-1]+f[i-j][j])%mod;
}
}
int ans=0;
for(register int i=1;i<=n-m+1;i++) {
const int pwr=power(i,k);
for(register int j=1;j<=m&&i*j<=n;j++) {
(ans+=1ll*pwr*f[n-i*j][m-j]%mod)%=mod;
}
}
printf("%d\n",ans);
return 0;
}

[CSAcademy]Sum of Powers的更多相关文章

  1. Euler's Sum of Powers Conjecture

    转帖:Euler's Sum of Powers Conjecture 存不存在四个大于1的整数的五次幂恰好是另一个整数的五次幂? 暴搜:O(n^4) 用dictionary:O(n^3) impor ...

  2. [伯努利数] poj 1707 Sum of powers

    题目链接: http://poj.org/problem?id=1707 Language: Default Sum of powers Time Limit: 1000MS   Memory Lim ...

  3. 【POJ1707】【伯努利数】Sum of powers

    Description A young schoolboy would like to calculate the sum for some fixed natural k and different ...

  4. UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

    自然数幂和: (1) 伯努利数的递推式: B0 = 1 (要满足(1)式,求出Bn后将B1改为1 /2) 参考:https://en.wikipedia.org/wiki/Bernoulli_numb ...

  5. POJ 1707 Sum of powers(伯努利数)

    题目链接:http://poj.org/problem?id=1707 题意:给出n 在M为正整数且尽量小的前提下,使得n的系数均为整数. 思路: i64 Gcd(i64 x,i64 y) { if( ...

  6. sum of powers

    题意: 考虑所有的可重集{a1,a2,a3....ak} 满足a1+a2+....+ak=n,求所有a1^m+a2^m+a3^m的和 n,m,k<=5000 题解: part1: 考虑f[i][ ...

  7. UVa 766 Sum of powers (伯努利数)

    题意: 求 ,要求M尽量小. 析:这其实就是一个伯努利数,伯努利数公式如下: 伯努利数满足条件B0 = 1,并且 也有 几乎就是本题,然后只要把 n 换成 n-1,然后后面就一样了,然后最后再加上一个 ...

  8. 51nod1228 序列求和(自然数幂和)

    与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html 由于结果对MOD取模,使用逆元 #include<c ...

  9. [转] Loren on the Art of MATLAB

    http://blogs.mathworks.com/loren/2007/03/01/creating-sparse-finite-element-matrices-in-matlab/ Loren ...

随机推荐

  1. Gson解决字段为空是报错的问题

    json解析有很多工具,这里说的是最常用也是解析速度最快的Gson,Gson是google家出的,有一个缺点就是无法设置null替换, 我们只能手动的批量替换服务器返回的null了,正常的接口定义的时 ...

  2. 80端口被占用 导致apach无法启动问题

    1.查找是哪个程序占用了80端口 netstat -ano 列出所有进程 观察 “本地地址” 列 找到对应的PID 我这里是4 简单的办法,打开任务管理器,查看PID是4的 是哪个进程. 发现是Sys ...

  3. js cookie 工具

    var CookieUtil = { get: function(name) { var cookieName = encodeURIComponent(name) + "=", ...

  4. 用 DocumentFormat.OpenXml 和Microsoft.Office.Interop.Word 写入或者读取word文件

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Tex ...

  5. C/C++遍历二维数组,列优先(column-major)比行优先(row-major)慢,why?

    C/C++遍历二维数组,列优先(column-major)比行优先(row-major)慢,why? 简单粗暴的答案:存在Cache机制! 稍微啰嗦一点:CPU访问内存(读/写,遍历数组的话主要是读) ...

  6. 用vi编辑文件

    原文:https://www.ibm.com/developerworks/library/l-lpic1-103-8/index.html Overview In this article, lea ...

  7. 新的表格展示利器 Bootstrap Table Ⅰ

     1.bootstrap table简介及特征 Bootstrap Table是国人开发的一款基于 Bootstrap 的 jQuery 表格插件,通过简单的设置,就可以拥有强大的单选.多选.排序.分 ...

  8. php把一些预定义的 HTML 实体转换为字符。

    htmlspecialchars_decode() echo htmlspecialchars_decode($condition,ENT_QUOTES) '  会被转成 单引号

  9. centos 6.9安装python 3.6

    .下载源码包在官网按照需要下载到本地 wget https://www.python.org/ftp/python/3.6.1/Python-3.6.1.tgz .解压源码包 tar -xvf Pyt ...

  10. 分享几个在线生成网址二维码的API接口

    现在很多大网站都有这样的一个功能,使用手机扫描一下网页上的二维码便可快速在手机上访问网站.想要实现这样的功能其实很简单,下面麦布分享几个在线生成网址二维码的API接口.都是采用http协议接口,无需下 ...