【xsy1503】 fountain DP
题目大意:给你$D$个格子,有$n$个喷水器,每个喷水器有一个喷水距离$r_i$。
现在你需要在这$D$个格子中选择$n$个位置按照任意顺序安装这$n$个喷水器,需要满足$n$个喷水器互相喷不到对方。
问方案数,对$10^9+7$取模
数据范围:$n$,$r_i≤40$,$D≤10^5$
我们不妨考虑我们钦定了这$n$个喷水器的出现顺序,从左到右第$i$个喷水器编号为$p[i]$。
确定排列顺序后,令$d=\sum \limits_{i=1}^{n-1} max(r_{p[i]},r_{p[i+1]})$
我们发现上式累加的实际上是相邻两个喷水器之间的最小间隔
我们尝试把这个间隔中的格子看成是一个格子。
我们就可以把原序列中$D$个格子看成是$D-d-1$个了。
现在也就是变成了要在这剩下的格子之间插入这$n$个喷水器,方案数显然为$\binom{D-d-1+n}{n}$。
下面考虑如何求不同的排列顺序数量。
我们先将$n$个喷水器按照喷水半径进行排序。
设$f[i][j][k]$表示前i个喷水器必须出现,且这$i$个喷水器间(包括两端),有$j$个可以插入喷水器,且由这些喷水器累加出的$d$为$k$的方案数量。
下面考虑在$f[i][j][k]$的基础上插入第$i+1$个喷水器。
假定这个喷水器插入后,两侧不能再插入喷水器,则有$f[i+1][j-1][k+2r_{i+1}]+=f[i][j][k]\times (j-2)$
假定这个喷水器插入后,只有一侧能插入喷水器,则有$f[i+1][j][k+r_{i+1}]+=f[i][j][k]\times (2j-2)$
上面两个转移需要$-2$的原因显然(并不能允许最左侧和最右侧插入喷水器)
假定这个喷水器插入后,两侧皆可以插入喷水器,则有$f[i+1][j+1][k]+=f[i][j][k]\times j$
初始情况:$f[1][2][0]=1$,答案为$\sum \limits_{i=1}^{\infty} f[n][2][i]$
转移和答案统计的时候记得取模即可
时间复杂度:$O(n^2\sum \limits_{i=1}^{n} r_i)$
#include<bits/stdc++.h>
#define M 42
#define N 110000
#define L long long
#define MOD 1000000007
using namespace std; L pow_mod(L x,L k){L ans=; for(;k;k>>=,x=x*x%MOD) if(k&) ans=ans*x%MOD; return ans;}
L fac[N]={},invfac[N]={};
L C(int n,int m){if(n-m<) return ; return fac[n]*invfac[m]%MOD*invfac[n-m]%MOD;} int n,D,r[M]={};
L f[M][M][M*M]={}; int main(){
fac[]=; for(int i=;i<N;i++) fac[i]=fac[i-]*i%MOD;
invfac[N-]=pow_mod(fac[N-],MOD-);
for(int i=N-;~i;i--) invfac[i]=invfac[i+]*(i+)%MOD; scanf("%d%d",&n,&D);
for(int i=;i<=n;i++) scanf("%d",r+i);
sort(r+,r+n+);
f[][][]=;
for(int i=;i<n;i++)
for(int j=;j<=n+;j++)
for(int k=;k<M*M;k++)
if(f[i][j][k]){
(f[i+][j+][k]+=f[i][j][k]*j)%=MOD;
if(j>) (f[i+][j-][k+*r[i+]]+=f[i][j][k]*(j-))%=MOD;
if(j>) (f[i+][j][k+r[i+]]+=f[i][j][k]*(*j-))%=MOD;
}
L ans=;
for(int d=;d<M*M;d++)
if(f[n][][d]){
(ans+=C(D-d-+n,n)*f[n][][d])%=MOD;
}
cout<<ans<<endl;
}
【xsy1503】 fountain DP的更多相关文章
- LG4719 【模板】动态dp 及 LG4751 动态dp【加强版】
题意 题目描述 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点\(x\)的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小 ...
- 【专题】数位DP
[资料] ★记忆化搜索:数位dp总结 之 从入门到模板 by wust_wenhao 论文:浅谈数位类统计问题 数位计数问题解法研究 [记忆化搜索] 数位:数字从低位到高位依次为0~len-1. 高位 ...
- 洛谷P4719 【模板】"动态 DP"&动态树分治
[模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上 ...
- LG5056 【模板】插头dp
题意 题目背景 ural 1519 陈丹琦<基于连通性状态压缩的动态规划问题>中的例题 题目描述 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? 输 ...
- 【专题】区间dp
1.[nyoj737]石子合并 传送门:点击打开链接 描述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这 ...
- 【BZOJ4976】宝石镶嵌 DP
[BZOJ4976]宝石镶嵌 Description 魔法师小Q拥有n个宝石,每个宝石的魔力依次为w_1,w_2,...,w_n.他想把这些宝石镶嵌到自己的法杖上,来提升法杖的威力.不幸的是,小Q的法 ...
- NOJ 1111 保险箱的密码 【大红】 [区间dp]
传送门 保险箱的密码 [大红] 时间限制(普通/Java) : 1000 MS/ 3000 MS 运行内存限制 : 65536 KByte总提交 : 118 测 ...
- 【CF480D】Parcels DP
[CF480D]Parcels 题意:有一个栈,有n个物品,每个物品可以选或不选.如果选了第i个物品,则获得$v_i$的收益,且第i个物品必须在$in_i$时刻入栈,$out_i$时刻出栈.每个物品还 ...
- 【BZOJ4621】Tc605 DP
[BZOJ4621]Tc605 Description 最初你有一个长度为 N 的数字序列 A.为了方便起见,序列 A 是一个排列. 你可以操作最多 K 次.每一次操作你可以先选定一个 A 的一个子串 ...
随机推荐
- 中间件RabbitMQ之运维篇
一.RabbtMQ简介 RabbitMQ的官方站: http:/://www.rabbitmq.com/ rabbitMQ是一个在AMQP协议标准基础上完整的,可服用的企业 ...
- 如何在3GPP下载协议
以下载AT Commands协议为例. 1. 打开3GPP网址:http://www.3gpp.org/ 2. 打开Specification-Specification Numbering,如图.去 ...
- ABP框架初始化数据(自定义)
找到目录:AbpFramework.EntityFramework>Migrations>SeedData,这目录下创建类:DefaultDataCreator.cs using Syst ...
- java并发编程艺术
cas算法 概要 刚开始看这本书的时候很经常看到cas算法,个人觉得cas算法在并发编程中也是挺重要的的一部分,cas是比较并交换的意思(compare and swap),campareAndSwa ...
- 18. pt-pmp
pt-pmp 是一个非常简单的工具,可以用来获取MySQL的堆栈信息.工具首先获取运行过程中的mysqld堆栈信息,然后将相似的线程进行汇总排序,根据调用频繁程度从高到低打印出来. 查看pt-pmp的 ...
- flask通过form表单一次上传多个文件
基本上,用了flask官网的示例代码(中文版,英文版),稍微做了修改. import os from flask import Flask, flash, request, redirect, url ...
- Scrum冲刺阶段1
各个成员在 Alpha 阶段认领的任务 人员 任务 何承华 美化设计 部分后端设计 陈宇 后端设计 丁培辉 美化设计 部分后端设计 温志铭 前端设计 杨宇潇 服务器搭建 张主强 前端设计 明日各个成员 ...
- jquery中siblings方法配合什么方法一起使用
siblings() 获得匹配集合中每个元素的同胞,通过选择器进行筛选是可选的.接下来通过本文给大家介绍jQuery siblings()用法实例详解,需要的朋友参考下吧 siblings() 获得匹 ...
- usb协议栈学习笔记
1.usb 集线器为什么一般都是只有4个扩展口? PC的根集线器可为每个A型连接器提供5V.500mA电源.一个总线供电的外部集线器可为每个端口提供100mA电流.由于USB为为外部集线器电路分配10 ...
- GitHub上好的Java项目
1. java-design-patterns(Star:36k)Github地址:https://github.com/iluwatar/java-design-patterns 介绍:设计模式是形 ...