搭建好网络后,常使用梯度下降类优化算法进行模型参数求解,模型越复杂我们在训练神经网络的过程上花的时间就越多,为了解决这一问题,我们就需要找一些优化算法来提高训练速度,TF的tf.train模块中提供了丰富的优化算法,这一节对这些优化器做下简单的对比。

Stochastic Gradient Descent(SGD)

最基础的方法就是GD了,将整个数据集放入模型中,不断的迭代得到模型的参数,当然这样的方法计算资源占用的比较大,那么有没有什么好的解决方法呢?就是把整个数据集分成小批(mini-batch),然后再进行上述操作这就是SGD了,这种方法虽然不能反应整体的数据情况,不过能够很大程度上加快了模型的训练速度,并且也不会丢失太多的准确率

参数的迭代公式

\(w:=w-\alpha*dw\)

Momentum

传统的GD可能会让学习过程十分的曲折,这里我们引入了惯性这一分量,在朝着最优点移动的过程中由于惯性走的弯路会变少

\(m=\beta*m-\alpha*dw\)

\(w:=w-m\)

AdaGrad

这个方法主要是在学习率上面动手脚,每个参数的更新都会有不同的学习率

\(s=s+dw^2\)

\(w:=w-\alpha*dw/\sqrt{s}\)

RMSProp

AdaGrad收敛速度快,但不一定是全局最优,为了解决这一点,加入了Momentum部分

\(s=\beta*s+(1-\beta)dw^2\)

\(w:=w-\alpha*dw/\sqrt{s}\)

Adam

adam是目前比较好的方法,它融合了Momentum和RMSProp方法

代码示例

下面部分使用TF来比较一下这些方法的效果

# -*- coding: utf-8 -*-
"""
@author: VasiliShi
"""
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
def reset_graph(seed=42):
tf.reset_default_graph()
tf.set_random_seed(seed)
np.random.seed(seed)
reset_graph()
plt.figure(1,figsize=(10,8))
x = np.linspace(-1,1,100)[:,np.newaxis] #<==>x=x.reshape(100,1)
noise = np.random.normal(0,0.1,size = x.shape)
y=np.power(x,2) + x +noise #y=x^2 + x+噪音
plt.scatter(x,y)
plt.show()
learning_rate = 0.01
batch_size = 10 #mini-batch的大小
class Network(object):
def __init__(self,func,**kwarg):
self.x = tf.placeholder(tf.float32,[None,1])
self.y = tf.placeholder(tf.float32,[None,1])
hidden = tf.layers.dense(self.x,20,tf.nn.relu)
output = tf.layers.dense(hidden,1)
self.loss = tf.losses.mean_squared_error(self.y,output)
self.train = func(learning_rate,**kwarg).minimize(self.loss)
SGD = Network(tf.train.GradientDescentOptimizer)
Momentum = Network(tf.train.MomentumOptimizer,momentum=0.5)
AdaGrad = Network(tf.train.AdagradOptimizer)
RMSprop = Network(tf.train.RMSPropOptimizer)
Adam = Network(tf.train.AdamOptimizer)
networks = [SGD,Momentum,AdaGrad,RMSprop,Adam]
record_loss = [[], [], [], [], []] #踩的坑不能使用[[]]*5
plt.figure(2,figsize=(10,8))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for stp in range(200):
index = np.random.randint(0,x.shape[0],batch_size)#模拟batch
batch_x = x[index]
batch_y = y[index]
for net,loss in zip(networks,record_loss):
_,l = sess.run([net.train,net.loss],feed_dict={net.x:batch_x,net.y:batch_y})
loss.append(l)#保存每一batch的loss
labels = ['SGD','Momentum','AdaGrad','RMSprop','Adam']
for i,loss in enumerate(record_loss):
plt.plot(loss,label=labels[i])
plt.legend(loc="best")
plt.xlabel("steps")
plt.ylabel("loss")
plt.show()

下图是batch_size=10的结果

下图是batch_size=30的结果

可以看的出Adam方法收敛速度最快,并且波动最小。

TensorFlow中的优化算法的更多相关文章

  1. Tensorflow 中的优化器解析

    Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I:  t ...

  2. optim.py-使用tensorflow实现一般优化算法

    optim.py Project URL:https://github.com/Codsir/optim.git Based on: tensorflow, numpy, copy, inspect ...

  3. TensorFlow中设置学习率的方式

    目录 1. 指数衰减 2. 分段常数衰减 3. 自然指数衰减 4. 多项式衰减 5. 倒数衰减 6. 余弦衰减 6.1 标准余弦衰减 6.2 重启余弦衰减 6.3 线性余弦噪声 6.4 噪声余弦衰减 ...

  4. 分别使用 Python 和 Math.Net 调用优化算法

    1. Rosenbrock 函数 在数学最优化中,Rosenbrock 函数是一个用来测试最优化算法性能的非凸函数,由Howard Harry Rosenbrock 在 1960 年提出 .也称为 R ...

  5. 梯度优化算法总结以及solver及train.prototxt中相关参数解释

    参考链接:http://sebastianruder.com/optimizing-gradient-descent/ 如果熟悉英文的话,强烈推荐阅读原文,毕竟翻译过程中因为个人理解有限,可能会有谬误 ...

  6. 机器学习中几种优化算法的比较(SGD、Momentum、RMSProp、Adam)

    有关各种优化算法的详细算法流程和公式可以参考[这篇blog],讲解比较清晰,这里说一下自己对他们之间关系的理解. BGD 与 SGD 首先,最简单的 BGD 以整个训练集的梯度和作为更新方向,缺点是速 ...

  7. TensorFlow实现与优化深度神经网络

    TensorFlow实现与优化深度神经网络 转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue ...

  8. TensorFlow中的通信机制——Rendezvous(二)gRPC传输

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 本篇是TensorFlow通信机制系列的第二篇文章,主要梳理使用gRPC网络传 ...

  9. TensorFlow中的并行执行引擎——StreamExecutor框架

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在前一篇文章中,我们梳理了TensorFlow中各种异构Device的添加和注 ...

随机推荐

  1. oracle 定期迁移分区表数据(不落地)

    [oracle@SJ ~]$ cat /home/oracle/JY_SJ.sh #!/bin/bashsource /home/oracle/.bash_profileSDATE=$(date  + ...

  2. StringRedisTemplate操作redis数据

    StringRedisTemplate与RedisTemplate区别点 两者的关系是StringRedisTemplate继承RedisTemplate. 两者的数据是不共通的:也就是说String ...

  3. 【转】js 获取浏览器高度和宽度值(多浏览器

    原文地址:http://www.jb51.net/article/19844.htm js获取浏览器高度和宽度值,尽量的考虑了多浏览器. IE中: document.body.clientWidth ...

  4. python中的 sql语句用法

    函数中应用sql语句def _get_cust_number(self,cr,uid,ids,field_name,args,context=None): res={} for order in se ...

  5. CF1106F Lunar New Year and a Recursive Sequence 原根、矩阵快速幂、BSGS

    传送门 好久没写数论题了写一次调了1h 首先发现递推式是一个乘方的形式,线性递推和矩阵快速幂似乎都做不了,那么是否能够把乘方运算变成加法运算和乘法运算呢? 使用原根!学过\(NTT\)的都知道\(99 ...

  6. java线程池和中断总结

    目录 java线程池和中断总结 一. 线程池的使用 二. java中断机制 中断的处理 三. 线程间通信机制总结 java线程池和中断总结 本系列文是对自己学习多线程和平时使用过程中的知识梳理,不适合 ...

  7. 爬虫学习--http请求详解

    上篇博客里面写了,爬虫就是发http请求(浏览器里面打开发送的都是http请求),然后获取到response,咱们再从response里面找到想要的数据,存储到本地. 咱们本章就来说一下什么是http ...

  8. item 6: 当auto推导出一个不想要的类型时,使用显式类型初始化的语法

    本文翻译自<effective modern C++>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 Item 5解释了比起显式指定类型,使用auto来 ...

  9. FFMPEG指令

    FFmpeg是一个用于音视频处理的自由软件,被广泛用于音视频开发.FFmpeg功能强大,本文主要介绍如何使用FFmpeg命令行工具进行简单的视频处理. 安装FFmpeg可以在官网下载各平台软件包或者静 ...

  10. Webpack 2 视频教程 004 - Webpack 初体验

    原文发表于我的技术博客 这是我免费发布的高质量超清「Webpack 2 视频教程」. Webpack 作为目前前端开发必备的框架,Webpack 发布了 2.0 版本,此视频就是基于 2.0 的版本讲 ...