图像的下采样Subsampling 与 上采样 Upsampling
I.目的
缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的:
1、使得图像符合显示区域的大小;
2、生成对应图像的缩略图。
放大图像(或称为上采样(upsampling)或图像插值(interpolating))的主要目的是放大原图像,从而可以显示在更高分辨率的显示设备上。
对图像的缩放操作并不能带来更多关于该图像的信息, 因此图像的质量将不可避免地受到影响。然而,确实有一些缩放方法能够增加图像的信息,从而使得缩放后的图像质量超过原图质量的。
II.原理
下采样原理:对于一幅图像I尺寸为M*N,对其进行s倍下采样,即得到(M/s)*(N/s)尺寸的得分辨率图像,当然s应该是M和N的公约数才行,如果考虑的是矩阵形式的图像,就是把原始图像s*s窗口内的图像变成一个像素,这个像素点的值就是窗口内所有像素的均值:
上采样原理:图像放大几乎都是采用内插值方法,即在原有图像像素的基础上在像素点之间采用合适的插值算法插入新的元素。
III, 插值算法分类
以达到保持边缘细节的目的。(2)基于插值后高分辨率图像边缘的方法这类插值方法:首先采用传统方法插值低分辨率图像,然后检测高分辨率图像的边缘,最后对边缘及附近像素进行特殊处理, 以去除模糊, 增强图像的边缘。
IV . 池化就是采样
采样层是使用 pooling的相关技术来实现的,目的就是用来降低特征的维度并保留有效信息,一定程度上避免过拟合。但是pooling的目的不仅仅是这些,他的目的是保持旋转、平移、伸缩不变形等。
采样有最大值采样,平均值采样,求和区域采样和随机区域采样等。池化也是这样的,比如最大值池化,平均值池化,随机池化,求和区域池化等。
(1) mean-pooling,即对邻域内特征点只求平均,
图像的下采样Subsampling 与 上采样 Upsampling的更多相关文章
- 【转】图像的上采样(upsampling)与下采样(subsampled)
转自:https://blog.csdn.net/stf1065716904/article/details/78450997 参考: http://blog.csdn.net/majinlei121 ...
- 图像的上采样(upsampling)与下采样(subsampled)
缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:1.使得图像符合显示区域的大小:2.生成对应图像的缩略图. 放大图像(或称为上采样(upsampli ...
- 图像上采样(图像插值)增取样(Upsampling)或内插(Interpolating)下采样(降采样),
缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的有两个:1.使得图像符合显示区域的大小:2.生成对应图像的缩略图.放大图像(或称为上采样(upsamplin ...
- 卷积和池化的区别、图像的上采样(upsampling)与下采样(subsampled)
1.卷积 当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去. ...
- opencv::图像上采样和降采样
图像金字塔概念 . 我们在图像处理中常常会调整图像大小,最常见的就是放大(zoom in)和缩小(zoom out),尽管几何变换也可以实现图像放大和缩小,但是这里我们介绍图像金字塔 . 一个图像金字 ...
- 上采样和PixelShuffle(转)
有些地方还没看懂, mark一下 文章来源: https://blog.csdn.net/g11d111/article/details/82855946 去年曾经使用过FCN(全卷积神经网络)及其派 ...
- upsampling(上采样)& downsampled(降采样)
缩小图像 缩小图像(或称为下采样(subsampled)或降采样(downsampled))的主要目的是两个: 使得图像符合显示区域的大小: 生成对应图像的缩略图: 下采样的原理: 对于一幅图像尺寸为 ...
- pytorch torch.nn 实现上采样——nn.Upsample
Vision layers 1)Upsample CLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align ...
- pytorch 不使用转置卷积来实现上采样
上采样(upsampling)一般包括2种方式: Resize,如双线性插值直接缩放,类似于图像缩放,概念可见最邻近插值算法和双线性插值算法——图像缩放 Deconvolution,也叫Transpo ...
随机推荐
- 将分支推送到远程存储库时遇到错误: rejected Updates were rejected because the remote contains work that you do not have locally
在仓库目录下执行 git pull origin master --allow-unrelated-histories 之后就可以成功的pull,push了
- HTML(三)
html图像.绝对路径和相对路径 html图像 <img>标签可以在网页上插入一张图片,它是独立使用的标签,通过“src”属性定义图片的地址,通过“alt”属性定义图片加载失败时显示的文字 ...
- 唐平中讲座笔记 Reinforcement mechanism design 20171107
渣排版预警,纯草稿... 唐平中.研究方向是经济学和ai方向,机制设计和拍卖设计. 内容:广告优化的方法论,自动优化. [内容] Basics on mechanism design and resr ...
- Python高级有关的题目
1,copy模块 from copy import deepcopy dic = {} list = [] for i in range(10): dic["num"] = i i ...
- jquery 上下滚动显示隐藏
function scroll(fn) { var beforeScrollTop = document.body.scrollTop, fn = fn || function() {}; win ...
- JS自学笔记04
JS自学笔记04 arguments[索引] 实参的值 1.对象 1)创建对象 ①调用系统的构造函数创建对象 var obj=new Object(); //添加属性.对象.名字=值; obj.nam ...
- pygame-KidsCanCode系列jumpy-part5-屏幕滚动
接上回继续,方块不断向上跳动的过程中,从视觉上看,整个背景屏幕应该不断向下滚动,而且上方要不断出现新档板(否则就没办法继续向上跳了),这节我们将来实现这种效果,感觉好象很复杂,但实现起来其实很简单,只 ...
- [Python设计模式] 第26章 千人千面,内在共享——享元模式
github地址:https://github.com/cheesezh/python_design_patterns 背景 有6个客户想做产品展示网站,其中3个想做成天猫商城那样的"电商风 ...
- 【Storm】Storm实战之频繁二项集挖掘(附源码)
一.前言 针对大叔据实时处理的入门,除了使用WordCount示例之外,还需要相对更深入点的示例来理解Storm,因此,本篇博文利用Storm实现了频繁项集挖掘的案例,以方便更好的入门Storm. 二 ...
- 数据分析:基于Python的自定义文件格式转换系统
*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...