代码实战之AdaBoost
尝试用sklearn进行adaboost实战 & SAMME.R算法流程,博客地址
- 初试AdaBoost
- SAMME.R算法流程
- sklearn之AdaBoostClassifier类
- 完整实战demo
初试AdaBoost
一个简单的例子,来介绍AdaBoostClassifier。
例子放在Github上,可以直接fork。
#coding=utf-8
#python 3.5
'''
Created on 2017年11月24日
@author: Scorpio.Lu
''' '''
在scikit-learn库中,有AdaBoostRegression(回归)和AdaBoostClassifier(分类)两个。
在对和AdaBoostClassifier进行调参时,主要是对两部分进行调参:1) AdaBoost框架调参;2)弱分类器调参
''' #导包
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
from sklearn.ensemble import AdaBoostClassifier #载入数据,sklearn中自带的iris数据集
iris=load_iris() '''
AdaBoostClassifier参数解释
base_estimator:弱分类器,默认是CART分类树:DecisionTressClassifier
algorithm:在scikit-learn实现了两种AdaBoost分类算法,即SAMME和SAMME.R,
SAMME就是原理篇介绍到的AdaBoost算法,指Discrete AdaBoost
SAMME.R指Real AdaBoost,返回值不再是离散的类型,而是一个表示概率的实数值,算法流程见后文
两者的主要区别是弱分类器权重的度量,SAMME使用了分类效果作为弱分类器权重,SAMME.R使用了预测概率作为弱分类器权重。
SAMME.R的迭代一般比SAMME快,默认算法是SAMME.R。因此,base_estimator必须使用支持概率预测的分类器。
loss:这个只在回归中用到,不解释了
n_estimator:最大迭代次数,默认50。在实际调参过程中,常常将n_estimator和学习率learning_rate一起考虑
learning_rate:每个弱分类器的权重缩减系数v。f_k(x)=f_{k-1}*a_k*G_k(x)。较小的v意味着更多的迭代次数,默认是1,也就是v不发挥作用。
另外的弱分类器的调参,弱分类器不同则参数不同,这里不详细叙述
'''
#构建模型
clf=AdaBoostClassifier(n_estimators=100) #弱分类器个数设为100
scores=cross_val_score(clf,iris.data,iris.target)
print(scores.mean())
SAMME.R算法流程
- 初始化样本权值:$ w_i=1/N,i=1,2,…,N $
- Repeat for $ m=1,2,…,M $:
- 训练一个弱分类器,得到样本的类别预测概率分布 $ p_m(x)=P(y=1|x)∈[0,1] $
- $f_m(x)=\frac{1}{2}log\frac{p_m(x)}{1-p_m(x)}$
- $w_i=w_iexp[-y_if_m(x_i)]$,同时,要进行归一化使得权重和为1
- 得到强分类模型:$sign{\sum_{m=1}^{M}f_m(x)}$
AdaBoostClassifier类
现在我们来说点理论的东西。关于AdaBoostClassifier。
sklearn.ensemble.AdaBoostClassifier的构造函数如下:
AdaBoostClassifier(base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm=’SAMME.R’, random_state=None)
各个参数已经在代码里介绍过了,这里不再叙述。有一点要注意,理论上可以选择任何一个弱分类器,不过需要有样本权重。
另外有方法:

另外一些方法请见官网sklearn-AdaBoost
完整实战demo
现在再来一个完整的demo,来看看AdaBoost的分类效果
#coding=utf-8
#python 3.5
'''
Created on 2017年11月27日 @author: Scorpio.Lu
''' import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_gaussian_quantiles #用make_gaussian_quantiles生成多组多维正态分布的数据
#这里生成2维正态分布,设定样本数1000,协方差2
x1,y1=make_gaussian_quantiles(cov=2., n_samples=200, n_features=2, n_classes=2, shuffle=True, random_state=1)
#为了增加样本分布的复杂度,再生成一个数据分布
x2,y2=make_gaussian_quantiles(mean=(3,3), cov=1.5, n_samples=300, n_features=2, n_classes=2, shuffle=True, random_state=1)
#合并
X=np.vstack((x1,x2))
y=np.hstack((y1,1-y2))
#plt.scatter(X[:,0],X[:,1],c=Y)
#plt.show() #设定弱分类器CART
weakClassifier=DecisionTreeClassifier(max_depth=1) #构建模型。
clf=AdaBoostClassifier(base_estimator=weakClassifier,algorithm='SAMME',n_estimators=300,learning_rate=0.8)
clf.fit(X, y) #绘制分类效果
x1_min=X[:,0].min()-1
x1_max=X[:,0].max()+1
x2_min=X[:,1].min()-1
x2_max=X[:,1].max()+1
x1_,x2_=np.meshgrid(np.arange(x1_min,x1_max,0.02),np.arange(x2_min,x2_max,0.02)) y_=clf.predict(np.c_[x1_.ravel(),x2_.ravel()])
y_=y_.reshape(x1_.shape)
plt.contourf(x1_,x2_,y_,cmap=plt.cm.Paired)
plt.scatter(X[:,0],X[:,1],c=y)
plt.show()
训练完成后的错误率大概是0.116。分类效果图如下:

作者 Scorpio.Lu
转载请注明出处!
代码实战之AdaBoost的更多相关文章
- Scala 深入浅出实战经典 第64讲:Scala中隐式对象代码实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第63讲:Scala中隐式类代码实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第52讲:Scala中路径依赖代码实战详解
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第51讲:Scala中链式调用风格的实现代码实战及其在Spark中应用
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第49课 Scala中Variance代码实战(协变)
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第48讲:Scala类型约束代码实战及其在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第47讲:Scala多重界定代码实战及其在Spark中的应用
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第40讲:Set、Map、TreeSet、TreeMap操作代码实战
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- Scala 深入浅出实战经典 第39讲:ListBuffer、ArrayBuffer、Queue、Stack操作代码实战
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
随机推荐
- linux下监控某个目录是否被更改
需求:对一个目录(比如/data/test)进行监控,当这个目录下文件或子目录出现变动(如修改.创建.删除.更名等操作)时,就发送邮件!针对上面的需求,编写shell脚本如下: [root@cento ...
- Mesos+Zookeeper+Marathon的Docker管理平台部署记录(2)- 负载均衡marathon-lb
之前介绍了Mesos+Zookeeper+Marathon的Docker管理平台部署记录(1)的操作,多余的废话不说了,下面接着说下在该集群环境下的负载均衡marathon-lb的部署过程: 默认情况 ...
- apacheTomcat
Window+R ------>cmd || Window PowerShell apacheTomcat\bin> ./startup.sh
- Linux内核分析——第五章 系统调用
第五章 系统调用 5.1 与内核通信 1.系统调用在用户空间进程和硬件设备之间添加了一个中间层,该层主要作用有三个: (1)为用户空间提供了一种硬件的抽象接口 (2)系统调用保证了系统的稳定和安全 ( ...
- Mock.js的简单使用
Mock.js 提供的种类有: 步骤: 首先安装:cnpm install mockjs 创建一个mock.js的文件,写好需要引入的数据格式 在main.js中引入mock.js文件: requir ...
- Java WebMail
http://www.open-open.com/06.htm http://www.oracle.com/technetwork/java/javamail/third-party-136965.h ...
- [转载]以及部分总结--Linux下创建单机ASM存储的Oracle实例的过程---感谢方总
Linux下单机安装ASM流程总结 一.安装Linux ESXi上传iso镜像至存储目录 创建虚拟机,并且选择主机设备的ISO启动 选择完成时编辑虚拟机设置 配置镜像文件如下: 打开控制台: 并且选择 ...
- WebService概述
一.WebService介绍 什么是WebService? 一言以蔽之:WebService是一种跨编程语言和跨操作系统平台的远程调用技术. 所谓跨编程语言和跨操作平台,就是说服务端程序采用java编 ...
- Android Studio & HTTP Proxy
Android Studio & HTTP Proxy https://mirrors.neusoft.edu.cn/android https://mirrors.neusoft.edu.c ...
- matlab数据导入verilog仿真
Matlab中的fopen和fprintf函数可以生成txt格式文件,并将波形数据以 %d 整数 %e 实数:科学计算法形式 %f 实数:小数形式 %g 由系统自动选取上述两种格式之一 %s 输出字符 ...