Semantic Compositionality through Recursive Matrix-Vector Spaces

作者信息:
Richard Socher Brody Huval Christopher D. Manning Andrew Y. Ng
richard@socher.org, {brodyh,manning,ang}@stanford.edu
Computer Science Department, Stanford University
代码数据公开:
https://www.socher.org/index.php/Main/

MX-RNN模型:
We present a novel recursive neural network model for semantic compositionality. In our context,compositionality is the ability to learn compositional vector representations for various types of phrases and sentences of arbitrary length.
不需要任何hand-designed semantic resources比如WorNet,FrameNet
通过加入WordNet hypernyms, POS and NER tags性能更好

2 MV-RNN: A Recursive Matrix-Vector Model
之前多个词向量组合成一个短语或者句子是用的线性关系,但是只能捕捉‘sum’的关系,不能捕捉可以改变另外一个词的含义的词的功能,例如extremely strong
1)给每个词分配了一个向量和一个矩阵
2) learning an input-specific, nonlinear, compositional function for computing vector and matrix representations for multi-word sequences of any syntactic type
如果一个词缺少operator semantics,那么它的矩阵就是一个单位矩阵;然而,如果一个词主要是作为operator,比如extremely,那么它的向量会接近0,它的矩阵gain a clear operator meaning,正向和负向都会增大被修饰词的含义

2.2 Matrix-Vector Neural Word Representation
与训练词向量为50维,矩阵50*50维,初始化矩阵是单位矩阵+高斯噪声,所以每个句子表示为((单词向量1,单词矩阵1),。。。,(),())

2.2 composition models for two words
2010年的工作,用了表示句法关系的矩阵R,背景知识的矩阵K
我们的工作:u需要任何手工涉及的semantic resources比如背景知识K,也不需要explicit knownledge of relation R,使用输入independant的组合函数
W是n*2n,可以将输入的词统一到相同的维度,W可以捕捉compositional信息
得到的是p

2.3 Recursive Compositions of Multiple Words and Phrases
This section describes how we extend a word-pair matrix-vector-based compositional model to learn vectors and matrices for longer sequences of words
Wm
得到的是P

2.4 Objective Functions for Training
One of the advantages of RNN-based models is that each node of a tree has associated with it a distributed vector representation (the parent vector p) which can also be seen as features describing that
phrase.
softmax对节点p分类

2.5learning

2.6 Low-Rank Matrix Approximations

5 combination od semantic relationship
semantic relationships between pairs of nominals. For instance, in the sentence “My [apartment]e1 has a pretty large [kitchen]e2.”, we want to predict that the kitchen and apartment are in a component-whole relationship.
figure5分类名词关系:
1)先找到要分类的两个词
2)使用节点向量分类
数据是9个顺序关系(两个方向)*2+没有方向的一个 = 19类,比如因果,文本-主题

Semantic Compositionality through Recursive Matrix-Vector Spaces-paper的更多相关文章

  1. 论文翻译——Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

    Abstract Semantic word spaces have been very useful but cannot express the meaning of longer phrases ...

  2. 向量空间(Vector Spaces)

    向量空间(Vector Spaces) 向量空间又称线性空间,是线性代数的中心内容和基本概念之一.在解析几何里引入向量的概念后,是许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域 ...

  3. 语义SLAM的数据关联和语义定位(二)Semantic Localization Via the Matrix Permanent

    论文假设和单目标模型 这部分想讲一下Semantic Localization Via the Matrix Permanent这篇文章的一些假设. 待求解的问题可以描述为 假设从姿态\(x\)看到的 ...

  4. 【读书笔记】:MIT线性代数(2):Vector Spaces and Subspaces

    Vector Space: R1, R2, R3,R4 , .... Each space Rn consists of a whole collection of vectors. R5 conta ...

  5. Deep Learning for NLP 文章列举

    Deep Learning for NLP 文章列举 原文链接:http://www.xperseverance.net/blogs/2013/07/2124/   大部分文章来自: http://w ...

  6. 转 Deep Learning for NLP 文章列举

    原文链接:http://www.xperseverance.net/blogs/2013/07/2124/   大部分文章来自: http://www.socher.org/ http://deepl ...

  7. tree-lstm初探

    https://zhuanlan.zhihu.com/p/35252733 可以先看看上面知乎文章里面的例子 Socher 等人于2012和2013年分别提出了两种区分词或短语类型的模型,即SU-RN ...

  8. 【MT】牛津的MT教程

    Preamble This repository contains the lecture slides and course description for the Deep Natural Lan ...

  9. Saw a tweet from Andrew Liam Trask, sounds like Oxford DeepNLP 2017 class have all videos slides practicals all up. Thanks Andrew for the tip!

    Saw a tweet from Andrew Liam Trask, sounds like Oxford DeepNLP 2017 class have all videos/slides/pra ...

随机推荐

  1. vs相同变量高亮显示

    https://blog.csdn.net/sinat_33718563/article/details/79241129 在VS2010中调试工程中,常常需要观察相同变量名在不同代码处的位置,VS默 ...

  2. Convolutional Pose Machines

    Convolutional Pose Machines 2018-12-10 18:17:20 Paper:https://www.cv-foundation.org/openaccess/conte ...

  3. 【Visual Studio 扩展工具】如何在ComponentOne的DataTree中实现RightToLeft布局

    概述 C1FlexGrid提供了创建轮廓树的功能,其中可以显示缩进结构,每个节点行旁边都有折叠/展开图标. 然后,用户可以展开和折叠轮廓以查看所需的细节级别. 为此,C1FlexGrid允许您使用其T ...

  4. 全局解释器锁GIL & 线程锁

    1.GIL锁(Global Interpreter Lock) Python代码的执行由Python虚拟机(也叫解释器主循环)来控制.Python在设计之初就考虑到要在主循环中,同时只有一个线程在执行 ...

  5. The Guideline of Setting Up Samba Server on linux(Ubuntu)

    The Guideline of Setting Up Samba Server on linux(Ubuntu) From terminate command window, install the ...

  6. pictureBox绑定Base64字符串

    if (!string.IsNullOrEmpty(imageCode)) { byte[] bytes = Convert.FromBase64String(imageCode); MemorySt ...

  7. 浅谈JS数据遍历的几种方式

    遍历对象(数组)是我们日常撸码的必不可少的部分,如何从性能上优化代码,提高运行效率?下文为你揭开真像: 第一种:普通的for循环 for(j = 0; j < arr.length; j++) ...

  8. _rank

    命令 ._add rank 1000 自定义等级 `level` 等级 `name`等级描述 `prefix` 前缀名称 `gossipText` 菜单显示 `meetValue` 达到值就升级 `r ...

  9. 拦截器实现HandlerInterceptor没有提示实现里面的方法

    在自定义拦截器的时候需要实现HandlerInterceptor,但是没有报错,如图: 如果想实现里面的方法,快捷键是command+o  

  10. Vue实现购物车小球动画

    思路: 1.因页面分组件分的比较细,由图可知是组件5到组件4的联动. 如果利用组件间通信需要 子组件5 -->组件3-->所有组件的父组件-->组件4, 层级略显复杂,所以使用了vu ...