David Silver强化学习Lecture2:马尔可夫决策过程
课件:Lecture 2: Markov Decision Processes
视频:David Silver深度强化学习第2课 - 简介 (中文字幕)
马尔可夫过程
马尔可夫决策过程简介
马尔可夫决策过程(Markov Decision Processes, MDPs)形式上用来描述强化学习中的环境.
其中,环境是完全可观测的(fully observable),即当前状态可以完全表征过程.
几乎所有的强化学习问题都能用MDPs来描述:
- 最优控制问题可以描述成连续MDPs;
- 部分观测环境可以转化成MDPs;
- 赌博机问题是只有一个状态的MDPs.
马尔可夫性质

马尔科夫性质(Markov Property)表明: 未来只与现在有关,而与过去无关.
状态转移矩阵
对于一个马尔可夫状态\(S\)及其后继状态\(S'\),其状态转移概率由下式定义:
\[
\mathcal { P } _ { s s ^ { \prime } } = \mathbb { P } \left[ S _ { t + 1 } = s ^ { \prime } | S _ { t } = s \right]
\]
状态转移矩阵(State Transition Matrix)\(\mathcal{P}\)定义了从所有状态\(S\)转移到所有后继状态\(S'\)的概率.
\[
\mathcal { P } = \left[ \begin{array} { c c c } { \mathcal { P } _ { 11 } } & { \dots } & { \mathcal { P } _ { 1 n } } \\ { \vdots } & { } & { } \\ { \mathcal { P } _ { n 1 } } & { \cdots } & { \mathcal { P } _ { n n } } \end{array} \right]
\]
其中,\(n\)为状态个数,且矩阵的每行和为1.
马尔可夫过程
马尔可夫过程(Markov Process)是一个无记忆的随机过程(memoryless random process).
即,随机状态\(S_1, S_2, \dots\)序列具有马尔可夫性质.
马尔可夫过程(或马尔可夫链)是一个二元组\(<\mathcal{S}, \mathcal{P}>\)
- \(\mathcal{S}\): (有限)状态集
- \(\mathcal{P}\): 状态转移概率矩阵, \(\mathcal { P } _ { s s ^ { \prime } } = \mathbb { P } \left[ S _ { t + 1 } = s ^ { \prime } | S _ { t } = s \right]\)

圆圈代表状态, 箭头代表状态之间的转移, 数值代表转移概率.
状态转移矩阵\(\mathcal{P}\)如下:
\[
{\mathcal P} =\begin{bmatrix} & C1 & C2 & C3 & Pass & Pub & FB & Sleep\\ C1 & &0.5 & & & & 0.5 & \\ C2 & & & 0.8 & & & &0.2\\ C3 & & & & 0.6& 0.4& &\\ Pass & & & & & & &1.0\\ Pub &0.2 & 0.4& 0.4 & & & &\\ FB &0.1 & & & & & 0.9 &\\ Sleep & & & & & & &1.0 \end{bmatrix}
\]
马尔可夫奖励过程
马尔可夫奖励过程(Markov Reward Process, MRP)是带有奖励的马尔可夫链.
马尔可夫奖励过程是一个四元组<\(\mathcal{S}\), \(\mathcal{P}\), \(\mathcal{R}\), \(\mathcal{\gamma}\)>
- \(\mathcal{S}\): (有限)状态集
- \(\mathcal{P}\): 状态转移概率矩阵, \(\mathcal { P } _ { s s ^ { \prime } } = \mathbb { P } \left[ S _ { t + 1 } = s ^ { \prime } | S _ { t } = s \right]\)
- \(\mathcal{R}\): 奖励函数, \(\mathcal { R } _ { s } = \mathbb { E } \left[ R _ { t + 1 } | S _ { t } = s \right]\)
- \(\gamma\): 折扣因子, \(\gamma \in [ 0,1 ]\)

回报
回报(Return) \(G_t\) 是从时间 \(t\) 开始的总折扣奖励.
\[ G _ { t } = R _ { t + 1 } + \gamma R _ { t + 2 } + \ldots = \sum _ { k = 0 } ^ { \infty } \gamma ^ { k } R _ { t + k + 1 } \]
- 折扣因子 \(\gamma \in [ 0,1 ]\) 表示未来的奖励在当前的价值. 由于未来的奖励充满不确定性, 因此需要乘上折扣因子;
- \(\gamma\) 接近 \(0\) 表明更注重当前的奖励(myopic);
- \(\gamma\) 接近 \(1\) 表明更具有远见(far-sighted).
值函数
值函数(Value Function) \(v(s)\) 表示一个状态 \(s\) 的长期价值(long-term value).
一个马尔可夫奖励过程(MRP)的状态值函数 \(v(s)\)是从状态 \(s\) 开始的期望回报.
\[v ( s ) = \mathbb { E } \left[ G _ { t } | S _ { t } = s \right]\]
MRPs的贝尔曼方程
值函数可以被分解为两部分:
- 立即奖励 \(R_{t+1}\)
- 后继状态的折扣价值 \(\gamma v(S_{t+1})\)
\[
\begin{aligned}
v ( s ) & = \mathbb { E } \left[ G _ { t } | S _ { t } = s \right] \\
& = \mathbb { E } \left[ R _ { t + 1 } + \gamma R _ { t + 2 } + \gamma ^ { 2 } R _ { t + 3 } + \ldots | S _ { t } = s \right] \\
& = \mathbb { E } \left[ R _ { t + 1 } + \gamma \left( R _ { t + 2 } + \gamma R _ { t + 3 } + \ldots \right) | S _ { t } = s \right] \\
& = \mathbb { E } \left[ R _ { t + 1 } + \gamma G _ { t + 1 } | S _ { t } = s \right] \\
& = \mathbb { E } \left[ R _ { t + 1 } | S _ { t } = s \right] + \mathbb { E } \left[ \gamma G _ { t + 1 } | S _ { t } = s \right]\\
& = \mathbb { E } \left[ R _ { t + 1 } | S _ { t } = s \right] + \gamma v \left( S _ { t + 1 } \right)\\
& = \mathbb { E } \left[ R _ { t + 1 } + \gamma v \left( S _ { t + 1 } \right) | S _ { t } = s \right]
\end{aligned}
\tag{1}
\label{eq:mrp-bellman-equation}
\]
上式表明, \(t\) 时刻的状态 \(S_t\) 和 \(t+1\) 时刻的状态 \(S_{t+1}\) 的值函数之间满足递推关系.
该递推式也称为贝尔曼方程(Bellman Equation).

如果已知概率转移矩阵 \(\mathcal{P}\), 则可将公式\eqref{eq:mrp-bellman-equation}变形为:
\[
v ( s ) = \mathcal { R } _ { s } + \gamma \sum _ { s ^ { \prime } \in \mathcal { S } } \mathcal { P } _ { s s ^ { \prime } } v \left( s ^ { \prime } \right)
\tag{2}
\label{eq:mrp-bellman-equation-2}
\]
例子:

贝尔曼方程的矩阵形式:
可将公式\eqref{eq:mrp-bellman-equation-2}改写为矩阵形式:
\[
v = \mathcal { R } + \gamma \mathcal { P } v
\]
其中, \(v\) 为一个列向量, 向量的元素为每个状态的值函数.
\[
\left[ \begin{array} { c } { v ( 1 ) } \\ { \vdots } \\ { v ( n ) } \end{array} \right] = \left[ \begin{array} { c } { \mathcal { R } _ { 1 } } \\ { \vdots } \\ { \mathcal { R } _ { n } } \end{array} \right] + \gamma \left[ \begin{array} { c c c } { \mathcal { P } _ { 11 } } & { \ldots } & { \mathcal { P } _ { 1 n } } \\ { \vdots } & { } & { } \\ { \mathcal { P } _ { n1 } } & { \ldots } & { \mathcal { P } _ { n n } } \end{array} \right] \left[ \begin{array} { c } { v ( 1 ) } \\ { \vdots } \\ { v ( n ) } \end{array} \right]
\]
观测贝尔曼方程的矩阵形式, 可知其为线性方程, 可直接求解如下.
\[
\begin{aligned}
v & = \mathcal { R } + \gamma \mathcal { P } v \\
( I - \gamma \mathcal { P } ) v & = \mathcal { R } \\
v & = ( I - \gamma \mathcal { P } ) ^ { - 1 } \mathcal { R }
\end{aligned}
\]
计算复杂度为: \(\mathcal{O}(n^3)\). 因此, 只适合直接求解小规模的MRP问题.
对于大规模的MRP问题, 通常采取以下的迭代方法:
- 动态规划(Dynamic programming)
- 蒙特卡洛评估(Monte-Carlo evaluation)
- 时序差分学习(Temporal-Difference learning)
马尔可夫决策过程
马尔可夫决策过程(Markov Decision Process, MDP)是带有决策的马尔可夫奖励过程.
马尔可夫决策过程是一个五元组<\(\mathcal{S}\), \(\mathcal{A}\), \(\mathcal{P}\), \(\mathcal{R}\), \(\mathcal{\gamma}\)>
- \(\mathcal{S}\): 有限的状态集
- \(\mathcal{A}\): 有限的动作集
- \(\mathcal{P}\): 状态转移概率矩阵, \(\mathcal { P } _ { s s ^ { \prime } } ^ {a}= \mathbb { P } \left[ S _ { t + 1 } = s ^ { \prime } | S _ { t } = s, A _ { t } = a \right]\)
- \(\mathcal{R}\): 奖励函数, \(\mathcal { R } _ { s } ^ {a} = \mathbb { E } \left[ R _ { t + 1 } | S _ { t } = s, A _ { t } = a \right]\)
- \(\gamma\): 折扣因子, \(\gamma \in [ 0,1 ]\)
例子:

策略
策略(Policy) \(\pi\) 是给定状态的动作分布.
\[ \pi ( a | s ) = \mathbb { P } \left[ A _ { t } = a | S _ { t } = s \right] \]
- 策略完全决定智能体的行为;
- MDP策略值依赖于当前状态(无关历史);
- 策略是固定的(与时间无关). \(A _ { t } \sim \pi ( \cdot | S _ { t } ) , \forall t > 0\)
给定一个马尔可夫决策过程 \(M = <\mathcal{S},\mathcal{A}, \mathcal{P}, \mathcal{R}, \mathcal{\gamma}>\) 和 一个策略 \(\pi\), 其可以转化为马尔可夫过程和马尔可夫奖励过程.
状态序列 \(S_1, S_2, \dots\) 是马尔科夫决策过程 \(<\mathcal{S}, \mathcal{P}^{\pi}>\).
状态和奖励序列 \(S_1, R_2, S_2, \dots\) 是马尔科夫奖励过程 \(<\mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma>\).
其中,
\[
\mathcal{P}_{s,s'}^{\pi} = \sum \limits_{a \in \mathcal{A}} \pi (a | s) \mathcal{P}_{ss'}^{a}
\]
\[
\mathcal{R}_{s}^{\pi} = \sum \limits_{a \in \mathcal{A}} \pi (a | s) \mathcal{R}_{s}^{a}
\]
值函数
值函数(Value Function)可分为状态值函数(state-value function)和动作值函数(action-value function).
MDP的状态值函数 \(v_{\pi}(s)\) 是从状态 \(s\) 开始, 然后按照策略 \(\pi\) 决策所获得的期望回报.
\[v_{\pi}(s) = \mathbb{E}_{\pi} \left[ G_t | S_t = s \right]\]
MDP的动作值函数 \(q_{\pi}(s, a)\) 是从状态 \(s\) 开始, 采取动作 \(a\), 然后按照策略 \(\pi\) 决策所获得的期望回报.
\[q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[ G_t | S_t = s, A_t = a \right]\]
贝尔曼期望方程
状态值函数可以被分解为两部分, 立即奖励 + 后继状态的折扣价值.
\[
v_{\pi}(s) = \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s \right]
\]
动作值函数也可以类似地分解.
\[
q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[ R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a \right]
\]

上图中, 空心圆圈代表状态, 实心圆圈代表动作.
在已知策略 \(\pi\) 的情况下, 状态值函数 \(v_{\pi}(s)\) 可以用动作值函数 \(q_{\pi}(s, a)\) 进行表示:
\[
v_{\pi}(s) = \sum \limits_{a \in \mathcal{A}} \pi(a | s) q_{\pi}(s, a)
\tag{3}
\label{eq:mdp-state-value-function}
\]

同理, 动作值函数 \(q_{\pi}(s, a)\) 也可以用状态值函数 \(v_{\pi}(s)\) 进行表示:
\[
q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum \limits_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a}v_{\pi}(s')
\tag{4}
\label{eq:mdp-action-value-function}
\]
状态值函数的贝尔曼期望方程:

将公式\eqref{eq:mdp-action-value-function}代入公式\eqref{eq:mdp-state-value-function}中, 可得状态值函数的贝尔曼期望方程:
\[
v_{\pi}(s) = \sum \limits_{a \in \mathcal{A}} \pi (a | s) \left( \mathcal{R}_{s}^{a} + \gamma \sum \limits_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)
\]
动作值函数的贝尔曼期望方程:

将公式\eqref{eq:mdp-state-value-function}代入公式\eqref{eq:mdp-action-value-function}中, 可得动作值函数的贝尔曼期望方程:
\[
q_{\pi}(s, a) = \mathcal{R}_{s}^{a} + \gamma \sum \limits_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \sum \limits_{a' \in \mathcal{A}} \pi (a' | s') q_{\pi}(s', a')
\]
例子:

贝尔曼期望方程的矩阵形式:
\[
v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}
\]
可直接求解:
\[
v_{\pi} = (I - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}
\]
最优值函数
最优状态值函数(optimal state-value function) \(v_{*}(s)\) 是所有策略中最大的值函数.
\[ v_{*}(s) = \max \limits_{\pi}v_{\pi}(s) \]
最优动作值函数(optimal action-value function) \(q_{*}(s, a)\) 是所有策略中最大的动作值函数.
\[ q_{*}(s, a) = \max \limits_{\pi}q_{\pi}(s, a) \]
- 最优值函数代表了MDP的最好性能.
- 当得知最优值函数时, MDP可被认为"已解决".
例子:

例子:

注: 根据公式\eqref{eq:mdp-state-value-function}, Pub动作的最优值应为 \(q_{*} = +1 + (0.2 \times 6 + 0.4 \times 8 + 0.4 \times 10) = 9.4\).
最优策略
首先定义策略之间的偏序关系, 使得策略之间可以进行比较:
\[
\pi \geq \pi ' \quad \text{if} \quad v_{\pi}(s) \geq v_{\pi '}(s) , \forall s
\]
对于任意的MDP来说:
- 存在一个最优策略 \(\pi_{*}\), 使得 \(\pi_{*} \geq \pi, \forall \pi\)
- 所有的最优策略都能取得最优值函数 \(v_{\pi_{*}}(s) = v_{*}(s)\)
- 所有的最优策略都能取得最优动作值函数 \(q_{\pi_{*}}(s, a) = q_{*}(s, a)\)
寻找最优策略
一个最优策略可以通过最大化所有的 \(q_{*}(s, a)\) 得到:
\[
\pi_{*} \left( a | s \right) = \left \{
\begin{array}{ll}
1 \ if \ a = \operatorname*{argmax} \limits_{a \in \mathcal{A}} \ q_{*} \left( s,a \right) \\
0 \ otherwise
\end{array} \right.
\]
- 对于任意的MDP, 总存在确定的最优策略
- 如果我们知道 \(q_{*}(s, a)\), 则可以立即得到最优策略
例子:

图中红色弧线表示每个状态的最优决策.
贝尔曼最优方程
\(v_{*}\)可以通过贝尔曼最优方程递归得到:

\[
v_{*}(s) = \max \limits_{a} q_{*}(s, a)
\tag{5}
\label{eq:state-bellman-optimal-equation}
\]
与公式\eqref{eq:mdp-state-value-function}的贝尔曼期望方程进行比较, 此时不再取均值, 而是取最大值.
\(q_{*}\)与公式\eqref{eq:mdp-action-value-function}类似:

\[
q _ { * } ( s , a ) = \mathcal { R } _ { s } ^ { a } + \gamma \sum _ { s ^ { \prime } \in \mathcal { S } } \mathcal { P } _ { s s ^ { \prime } } ^ { a } v _ { * } \left( s ^ { \prime } \right)
\tag{6}
\label{eq:action-bellman-optimal-equation}
\]
状态值函数的贝尔曼最优方程

将公式\eqref{eq:action-bellman-optimal-equation}代入公式\eqref{eq:state-bellman-optimal-equation}可得 \(v_{*}\) 的贝尔曼最优方程:
\[
v _ { * } ( s ) = \max _ { a } \mathcal { R } _ { s } ^ { a } + \gamma \sum _ { s ^ { \prime } \in \mathcal { S } } \mathcal { P } _ { s s ^ { \prime } } ^ { a } v _ { * } \left( s ^ { \prime } \right)
\]
动作值函数的贝尔曼最优方程

将公式\eqref{eq:state-bellman-optimal-equation}代入公式\eqref{eq:action-bellman-optimal-equation}可得 \(q_{*}\) 的贝尔曼最优方程:
\[
q _ { * } ( s , a ) = \mathcal { R } _ { s } ^ { a } + \gamma \sum _ { s ^ { \prime } \in \mathcal { S } } \mathcal { P } _ { s s ^ { \prime } } ^ { a } \max _ { a ^ { \prime } } q _ { * } \left( s ^ { \prime } , a ^ { \prime } \right)
\]
例子:

贝尔曼最优方程的求解
贝尔曼最优方程不是线性的(因为有取\(max\)操作), 因此没有封闭解(Closed-form solution).
通常采用迭代求解方法:
- 值迭代(Value Iteration)
- 策略迭代(Policy Iteration)
- Q-Learning
- Sarsa
MDP的扩展
- 无穷和连续的MDPs
- 部分可观测的MDPs
- 不折扣, 平均奖励MDPs
David Silver强化学习Lecture2:马尔可夫决策过程的更多相关文章
- 强化学习-MDP(马尔可夫决策过程)算法原理
1. 前言 前面的强化学习基础知识介绍了强化学习中的一些基本元素和整体概念.今天讲解强化学习里面最最基础的MDP(马尔可夫决策过程). 2. MDP定义 MDP是当前强化学习理论推导的基石,通过这套框 ...
- David Silver强化学习Lecture3:动态规划
课件:Lecture 3: Planning by Dynamic Programming 视频:David Silver强化学习第3课 - 动态规划(中文字幕) 动态规划 动态(Dynamic): ...
- David Silver强化学习Lecture1:强化学习简介
课件:Lecture 1: Introduction to Reinforcement Learning 视频:David Silver深度强化学习第1课 - 简介 (中文字幕) 强化学习的特征 作为 ...
- David Silver 强化学习原理 (中文版 链接)
教程的在线视频链接: http://www.bilibili.com/video/av9831889/ 全部视频链接: https://space.bilibili.com/74997410/vide ...
- 强化学习入门基础-马尔可夫决策过程(MDP)
作者:YJLAugus 博客: https://www.cnblogs.com/yjlaugus 项目地址:https://github.com/YJLAugus/Reinforcement-Lear ...
- 转:增强学习(二)----- 马尔可夫决策过程MDP
1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...
- 增强学习(二)----- 马尔可夫决策过程MDP
1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...
- 【cs229-Lecture16】马尔可夫决策过程
之前讲了监督学习和无监督学习,今天主要讲“强化学习”. 马尔科夫决策过程:Markov Decision Process(MDP) 价值函数:value function 值迭代:value iter ...
- [Reinforcement Learning] 马尔可夫决策过程
在介绍马尔可夫决策过程之前,我们先介绍下情节性任务和连续性任务以及马尔可夫性. 情节性任务 vs. 连续任务 情节性任务(Episodic Tasks),所有的任务可以被可以分解成一系列情节,可以看作 ...
随机推荐
- POI写Word换行
本文旨在描述基于变量替换生成Word doc文件的换行方式.Word换行主要有两大类,一类是表格单元格文本的换行,另一类是表格之外的文本的换行.对于表格外的文本我们可以使用“\r”或者“(char)1 ...
- (8)Python判断结构
- Reflection 反射
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/A__17/article/details/30571923 1.概念:所谓的反射.能够理解为在运行时 ...
- The Cat in the Hat POJ - 1289
题意:给你来两个数A,B .其中A=(n+1)k, B=nk 输出:(nk-1)/(n-1) 和 ∏ (n+1)k-i ni 思路:关键就是怎么求n和k.本来想这n一定是几个质因数的乘积,那 ...
- 安装Docker和配置加速器(二)
一. 安装 docker-ce 1. 访问 https://opsx.alibaba.com/mirror 2. 打开这条URL: 二.Ubuntu 系统安装 Docker 1. 使用apt-get进 ...
- 理解WebSocket心跳及重连机制(五)
理解WebSocket心跳及重连机制 在使用websocket的过程中,有时候会遇到网络断开的情况,但是在网络断开的时候服务器端并没有触发onclose的事件.这样会有:服务器会继续向客户端发送多余的 ...
- Git使用—第一讲:初识版本控制工具
几乎所有出色的项目都不是一个人完成的,而是由一个团队共同合作开发完成的,这个时候多人之间的代码同步问题就显得异常重要了,因此版本控制工具也就应运而生了.常见的版本控制工具主要有SVN和Git,接下来要 ...
- Linux命令——head/tail
一.head head主要是用来显示档案的开头至标准输出中,默认打印相应文件的开头10 行. 1)命令格式 head [参数] [文件] 2)常用参数 -q 隐藏文件名-v 显示文件名 ...
- 配置进程外的Session
1.Session保存在SQLServer中配置方法 1)运行.NetFramework安装目录下对应版本的aspnet_regsql.exe 来创建相关的数据库.表和存储过程等,比如: C:\Win ...
- TCP/IP协议--TCP的交互数据流和成块数据流
前边讲了TCP连接的建立和终止,分别要三次握手和四次通信.这些报文段都只包含首部,没有数据部分. 这里就讲讲数据传送的一些细节.一个TCP连接建立成功以后,就可以开始传送数据了~ 一般TCP数据 ...