[USACO18DEC]The Cow Gathering
Description:
给定一棵树,每次删去叶子,有m个限制,分别为(a,b)表示a需要比b先删,为每个点能否成为最后被删的点
Hint:
\(n,m \le 10^5\)
Solution:
手模后会发现一个十分不显然的规律: 若a比b先删,则a在以b为根的子树中的点,都不能最后删,
于是这样就转化为这个题了:https://www.cnblogs.com/list1/p/10497877.html
每次直接打个差分标记
这题还要判无解的情况(这谁想得到啊)
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=5e5+5;
int n,m,cnt,tot,in[mxn],hd[mxn],vis[mxn],hd2[mxn],sz[mxn],dep[mxn],ans[mxn],tag[mxn],dfn[mxn],f[mxn][19];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline int chkmax(int &x,int y) {if(x<y) x=y;}
inline int chkmin(int &x,int y) {if(x>y) x=y;}
struct ed {
int to,nxt;
}t[mxn<<1];
inline void add(int u,int v) {
t[++cnt]=(ed) {v,hd[u]}; hd[u]=cnt;
}
inline void add2(int u,int v) {
t[++cnt]=(ed) {v,hd2[u]}; hd2[u]=cnt;
++in[v];
}
int up(int u,int k)
{
for(int i=30;i>=0;--i)
if(k&(1<<i)) u=f[u][i];
return u;
}
void dfs(int u,int fa)
{
f[u][0]=fa; dfn[u]=++tot; dep[u]=dep[fa]+1; sz[u]=1;
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to;
if(v==fa) continue ;
dfs(v,u); sz[u]+=sz[v];
}
}
void solve(int u,int fa,int val)
{
val+=tag[u]; ans[u]=val>0;
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to;
if(v==fa) continue ;
solve(v,u,val);
}
}
int flag=0;
void check()
{
queue<int > q;
for(int i=1;i<=n;++i)
if(in[i]<2) q.push(i),vis[i]=1;
while(!q.empty()) {
int u=q.front(); q.pop();
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to; --in[v];
if(!vis[v]&&in[v]<2) {
vis[v]=1;
q.push(v);
}
}
for(int i=hd2[u];i;i=t[i].nxt) {
int v=t[i].to; --in[v];
if(!vis[v]&&in[v]<2) {
vis[v]=1;
q.push(v);
}
}
}
for(int i=1;i<=n;++i) if(!vis[i]) flag=1;
}
int main()
{
n=read(); m=read(); int u,v,w;
for(int i=1;i<n;++i) {
u=read(); v=read();
add(u,v); add(v,u);
++in[u]; ++in[v];
}
dfs(1,1); f[1][0]=1;
for(int j=1;j<=18;++j)
for(int i=1;i<=n;++i)
f[i][j]=f[f[i][j-1]][j-1];
for(int i=1;i<=m;++i) {
u=read(); v=read(); add2(u,v);
if(dfn[v]>dfn[u]&&dfn[v]<dfn[u]+sz[u]) {
int pos=up(v,dep[v]-dep[u]-1);
--tag[pos];
++tag[1];
}
else ++tag[u];
}
check();
if(flag) {
for(int i=1;i<=n;++i)
printf("0\n");
return 0;
}
solve(1,1,0);
for(int i=1;i<=n;++i) printf("%d\n",ans[i]^1);
return 0;
}
[USACO18DEC]The Cow Gathering的更多相关文章
- P5157 [USACO18DEC]The Cow Gathering
首先考虑怎么check一个点是否能被最后一个删除. 可以这么建图,以这个点建有根树,边全部向上指,再加上剩下的有向边. 很明显,这里的一条边的定义就变成了只有删去这个点,才可以删去它指向的点. 因此, ...
- [USACO18DEC]The Cow Gathering P
首先可以思考一下每次能删去的点有什么性质. 不难发现,每次能删去的点都是入度恰好为 \(1\) 的那些点(包括 \(a_i \rightarrow b_i\) 的有向边). 换句话说,每次能删去的点既 ...
- BZOJ1827[USACO 2010 Mar Gold 1.Great Cow Gathering]——树形DP
题目描述 Bessie正在计划一年一度的奶牛大集会,来自全国各地的奶牛将来参加这一次集会.当然,她会选择最方便的地点来举办这次集会.每个奶牛居住在 N(1<=N<=100,000) 个农场 ...
- 【luoguP2986】[USACO10MAR]伟大的奶牛聚集Great Cow Gathering
题目链接 先把\(1\)作为根求每个子树的\(size\),算出把\(1\)作为集会点的代价,不难发现把集会点移动到\(u\)的儿子\(v\)上后的代价为原代价-\(v\)的\(size\)*边权+( ...
- P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- 洛谷 P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…(树规)
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- 洛谷 P2986 [USACO10MAR]Great Cow Gat…(树形dp+容斥原理)
P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat… 题目描述 Bessie is planning the annual Great Cow Gathering for c ...
- [USACO10MAR]伟大的奶牛聚集Great Cow Gat…
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
随机推荐
- C++中explicit关键字的作用 (转)
explicit用来防止由构造函数定义的隐式转换. 要明白它的作用,首先要了解隐式转换:可以用单个实参来调用的构造函数定义了从形参类型到该类类型的一个隐式转换. 例如: class things { ...
- Windows批处理命令用法
阅读下面文字需要一定的dos基础概念,象:盘符.文件.目录(文件夹).子目录.根目录.当前目录 每个命令的完整说明请加 /? 参数参考微软的帮助文档可以看到,在 /? 帮助里,"命令扩展名& ...
- java操作office和pdf文件java读取word,excel和pdf文档内容
在平常应用程序中,对office和pdf文档进行读取数据是比较常见的功能,尤其在很多web应用程序中.所以今天我们就简单来看一下Java对word.excel.pdf文件的读取.本篇博客只是讲解简单应 ...
- .NET编码解码(HtmlEncode与HtmlDecode)
编码代码: System.Web.HttpUtility.HtmlEncode("<a href=\"http://hovertree.com/\">何问起& ...
- ElasticSearch(五) Elasticsearch-jdbc实现MySQL同步到ElasticSearch
https://www.cnblogs.com/wt645631686/p/8274722.html
- thinkphp5分页传参
$name = input('get.searchKey/s'); if($name != ""){ $this->assign('searchKey', $name); $ ...
- BZOJ5084[hashit]
题解: 后缀自动机 我们可以通过建立trie 把询问变成询问一些点的并 把trie建立成SAM和广义SAM基本相同,就是在父亲和儿子之间连边 然后就变成了询问树链的并 我们可以发现答案=sigma d ...
- 基于nopcommerce b2c开源项目的精简版开发框架Nop.Framework
http://www.17ky.net/soft/70612.html?v=1#0-sqq-1-39009-9737f6f9e09dfaf5d3fd14d775bfee85 项目详细介绍 该开源项目是 ...
- ArcGIS Engine 10.x许可代码
相比9.3,10.x许可代码的书写改变了,ArcObjects SDK 10 Microsoft .NET Framework 帮助文档中,提供了以下两种方式: 1. Calling RuntimeM ...
- 牛客挑战赛30 小G砍树 树形dp
小G砍树 dfs两次, dp出每个点作为最后一个点的方案数. #include<bits/stdc++.h> #define LL long long #define fi first # ...