题目传送门

  传送点I

  传送点II

题目大意

  给定串$A, B$,求$A$和$B$长度大于等于$k$的公共子串的数量。

  根据常用套路,用一个奇怪的字符把$A$,$B$连接起来,然后二分答案,然后按mid分组。

  分完组考虑如何统计每一组的贡献。

  对于每一组内每一对$(A_i , B_j)$考虑拆成两部分:

  • $rank(A_i) < rank(B_j)$
  • $rank(A_i) > rank(B_j)$

  然后就可以从小到大枚举每一个串,然后考虑前面的$A_i$或$B_j$的贡献。

  显然这个贡献从当前串的前一个串往前走单调不增,然后就拿个单调栈维护就完了。

Code

 /**
* poj
* Problem#3415
* Accepted
* Time: 1110ms
* Memory: 10232k
*/
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std;
typedef bool boolean;
#define ll long long #define pii pair<int, int>
#define fi first
#define sc second const int N = 2e5 + ; typedef class Pair3 {
public:
int x, y, id; Pair3() { }
Pair3(int x, int y, int id):x(x), y(y), id(id) { }
}Pair3; typedef class SuffixArray {
protected:
Pair3 T1[N], T2[N];
int cnt[N]; public:
int n;
char *str;
int sa[N], rk[N], hei[N]; void set(int n, char* str) {
this->n = n;
this->str = str;
memset(sa, , sizeof(sa));
memset(rk, , sizeof(rk));
memset(hei, , sizeof(hei));
} void radix_sort(Pair3* x, Pair3* y) {
int m = max(n, );
memset(cnt, , sizeof(int) * m);
for (int i = ; i < n; i++)
cnt[x[i].y]++;
for (int i = ; i < m; i++)
cnt[i] += cnt[i - ];
for (int i = ; i < n; i++)
y[--cnt[x[i].y]] = x[i]; memset(cnt, , sizeof(int) * m);
for (int i = ; i < n; i++)
cnt[y[i].x]++;
for (int i = ; i < m; i++)
cnt[i] += cnt[i - ];
for (int i = n - ; ~i; i--)
x[--cnt[y[i].x]] = y[i];
} void build() {
for (int i = ; i < n; i++)
rk[i] = str[i];
for (int k = ; k < n; k <<= ) {
for (int i = ; i + k < n; i++)
T1[i] = Pair3(rk[i], rk[i + k], i);
for (int i = n - k; i < n; i++)
T1[i] = Pair3(rk[i], , i);
radix_sort(T1, T2);
int diff = ;
rk[T1[].id] = ;
for (int i = ; i < n; i++)
rk[T1[i].id] = (T1[i].x == T1[i - ].x && T1[i].y == T1[i - ].y) ? (diff) : (++diff);
if (diff == n - )
break;
}
for (int i = ; i < n; i++)
sa[rk[i]] = i;
} void get_height() {
for (int i = , j, k = ; i < n; i++, (k) ? (k--) : ()) {
if (rk[i]) {
j = sa[rk[i] - ];
while (i + k < n && j + k < n && str[i + k] == str[j + k]) k++;
hei[rk[i]] = k;
}
}
} const int& operator [] (int p) {
return sa[p];
} const int& operator () (int p) {
return hei[p];
}
}SuffixArray; int K;
int n, m;
char S[N];
SuffixArray sa; inline boolean init() {
scanf("%d", &K);
if (!(K--))
return false;
scanf("%s", S);
n = strlen(S);
S[n] = '#';
scanf("%s", S + n + );
m = strlen(S + n + );
n += m + ;
sa.set(n, S);
return true;
} ll res = , sum;
int tp = ;
pii st[N];
inline void solve(int L, int R) { // Calculate the s_i (i \in [L, R))
if (R - L < )
return ;
tp = sum = ;
for (int i = L, sg; i < R - ; i++) {
sg = (sa[i] < n - m - );
if (!sg)
res += sum;
while (tp && st[tp].fi >= sa(i + ))
sg += st[tp].sc, sum -= st[tp].sc * 1ll * (st[tp].fi - K), tp--;
sum += (sa(i + ) - K) * 1ll * sg;
st[++tp] = pii(sa(i + ), sg);
}
if (!(sa[R - ] < n - m - ))
res += sum; tp = sum = ;
for (int i = L, sg; i < R - ; i++) {
sg = !(sa[i] < n - m - );
if (!sg)
res += sum;
while (tp && st[tp].fi >= sa(i + ))
sg += st[tp].sc, sum -= st[tp].sc * 1ll * (st[tp].fi - K), tp--;
sum += (sa(i + ) - K) * 1ll * sg;
st[++tp] = pii(sa(i + ), sg);
}
if (sa[R - ] < n - m - )
res += sum;
} inline void solve() {
res = ;
sa.build();
sa.get_height(); int lst = ;
for (int i = ; i < n; i++)
if (sa(i) < K + )
solve(lst, i), lst = i;
solve(lst, n);
printf(Auto"\n", res);
} int main() {
while (init())
solve();
return ;
}

poj 3415 Common Substrings - 后缀数组 - 二分答案 - 单调栈的更多相关文章

  1. poj 3415 Common Substrings —— 后缀数组+单调栈

    题目:http://poj.org/problem?id=3415 先用后缀数组处理出 ht[i]: 用单调栈维护当前位置 ht[i] 对之前的 ht[j] 取 min 的结果,也就是当前的后缀与之前 ...

  2. poj 3415 Common Substrings——后缀数组+单调栈

    题目:http://poj.org/problem?id=3415 因为求 LCP 是后缀数组的 ht[ ] 上的一段取 min ,所以考虑算出 ht[ ] 之后枚举每个位置作为右端的贡献. 一开始想 ...

  3. poj 3415 Common Substrings 后缀数组+单调栈

    题目链接 题意:求解两个字符串长度 大于等于k的所有相同子串对有多少个,子串可以相同,只要位置不同即可:两个字符串的长度不超过1e5; 如 s1 = "xx" 和 s2 = &qu ...

  4. POJ - 3415 Common Substrings (后缀数组)

    A substring of a string T is defined as: T( i, k)= TiTi +1... Ti+k -1, 1≤ i≤ i+k-1≤| T|. Given two s ...

  5. POJ 3415 Common Substrings 后缀数组+并查集

    后缀数组,看到网上很多题解都是单调栈,这里提供一个不是单调栈的做法, 首先将两个串 连接起来求height   求完之后按height值从大往小合并.  height值代表的是  sa[i]和sa[i ...

  6. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  7. POJ 3415 Common Substrings ——后缀数组

    [题目分析] 判断有多少个长度不小于k的相同子串的数目. N^2显然是可以做到的. 其实可以维护一个关于height的单调栈,统计一下贡献,就可以了. 其实还是挺难写的OTZ. [代码] #inclu ...

  8. Poj 1743 Musical Theme(后缀数组+二分答案)

    Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 28435 Accepted: 9604 Descri ...

  9. Poj 3261 Milk Patterns(后缀数组+二分答案)

    Milk Patterns Case Time Limit: 2000MS Description Farmer John has noticed that the quality of milk g ...

随机推荐

  1. tomcat架构分析和源码解读

    最近在看<深入分析java web技术内幕>,书中讲解了一部分tomcat的相关知识,我也去查看了一些源码,看了大神们写的代码,我才知道自己就像在做加减乘除一样,这是不行的.还有好多包和类 ...

  2. STL next_permutation 算法原理和自行实现

    目标 STL中的next_permutation 函数和 prev_permutation 两个函数提供了对于一个特定排列P,求出其后一个排列P+1和前一个排列P-1的功能. 这里我们以next_pe ...

  3. Linux命令行下快捷键

    快捷键 说明 Ctrl+a 切换到命令行开始 Ctrl+e 切换到命令行末尾 Ctrl+c 终止当前命令或脚本 Ctrl+d ①退出当前shell,相当于exit②一个个删除光标后字符 Ctrl+l ...

  4. .NET Core开发日志——OData

    简述 OData,即Open Data Protocol,是由微软在2007年推出的一款开放协议,旨在通过简单.标准的方式创建和使用查询式及交互式RESTful API. 类库 在.NET Core中 ...

  5. jQuery设置时间格式

    <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8&quo ...

  6. xcode代码提示没了

    defaults write com.apple.dt.XCode IDEIndexDisable 0 https://www.jianshu.com/p/57a14bed9d1b

  7. python->解析xml文件

    '''"D:\three_test\gpn_InternetGatewayDevice_v2.xml" <SOAP-ENV:Envelope> <SOAP-ENV ...

  8. CF280D k-Maximum Subsequence Sum

    题目链接:洛谷 题目大意:[题意翻译已经够直白了] 首先,相信大家一开始都是想去直接dp,但是发现复杂度不对. 于是我们考虑一个黑科技:模拟费用流(相信大部分人看见数据范围就绝对不会想到费用流) 我们 ...

  9. winform做的excel与数据库的导入导出

    闲来无事,就来做一个常用的demo,也方便以后查阅 先看效果图 中间遇到的主要问题是获取当前连接下的所有的数据库以及数据库下所有的表 在网上查了查,找到如下的方法 首先是要先建立一个连接 _connM ...

  10. npm 镜像的问题

    1> cnpm(不推荐) npm install -g cnpm --registry=https://registry.npm.taobao.org 2> 推荐第二种 npm confi ...