Choosing number ZOJ - 3690 (矩阵快速幂)
题意:n个人站成一排,每个人任意从1——m中任意取一个数,要求相邻两个人的如果数字相同,数字要大于k。
分划思想推导表达式:
假设 i 个人时。第i个人的选择有两种一种是选择小于等于k的数,另一种是大于k的数。则设这两种情况的组合数分别为F(i)和 G(i)
那么F(i)=(m-k)(F(i-1)+G(i-1));m-k表示第i个人,选择了大于k的选择。
那么G(i)=kF(i-1)+(k-1)G(i-1); k*F(i-1),表示第i个人选的是大于k的数,而第i个人只能在0—k种选择,所以0—k都可以选择。但是,如果第i-1人选择了
0—k中的一个数,那么为了满足条件相邻元素大于k的原则,所以不能选择第i-1的数,所以是k-1;
然后就是基础的构造函数了。
#include<cstdio>
#include<cstring>
#define mod int(1e9+7)
#define ll long long
ll m, k, n;
struct jz
{
ll num[][];
jz(){ memset(num, , sizeof(num)); }
jz operator*(const jz &p)const
{
jz ans;
for (int k = ; k < ;++k)
for (int i = ; i < ;++i)
for (int j = ; j < ; ++j)
ans.num[i][j] = (ans.num[i][j] + num[i][k] * p.num[k][j] % mod) % mod;
return ans;
}
}p;
jz POW(jz x, ll n)
{
jz ans;
for (int i = ; i < ; ++i)ans.num[i][i] = ;
for (; n;n>>=, x=x*x)
if (n & )ans = ans*x;
return ans;
}
void init()
{
p.num[][] = m - k; p.num[][] = m - k;
p.num[][] = k; p.num[][] = k - ;
}
int main()
{
while (scanf("%lld%lld%lld", &n, &m, &k)!=EOF)
{
ll G1 = k;
ll F1 = m - k;
init();
jz ans = POW(p, n - );
printf("%lld\n", (ans.num[][] * F1%mod + ans.num[][] * G1%mod+ans.num[][]*F1%mod+ans.num[][]*G1%mod) % mod);
}
return ;
}
Choosing number ZOJ - 3690 (矩阵快速幂)的更多相关文章
- A - Number Sequence(矩阵快速幂或者找周期)
Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * ...
- CF - 392 C. Yet Another Number Sequence (矩阵快速幂)
CF - 392 C. Yet Another Number Sequence 题目传送门 这个题看了十几分钟直接看题解了,然后恍然大悟,发现纸笔难于描述于是乎用Tex把初始矩阵以及转移矩阵都敲了出来 ...
- hdu 1005 Number Sequence(矩阵快速幂,找规律,模版更通用)
题目 第一次做是看了大牛的找规律结果,如下: //显然我看了答案,循环节点是48,但是为什么是48,据说是高手打表出来的 #include<stdio.h> int main() { ], ...
- LightOj 1065 - Number Sequence (矩阵快速幂,简单)
题目 和 LightOj 1096 - nth Term 差不多的题目和解法,这道相对更简单些,万幸,这道比赛时没把模版给抽风坏. #include<stdio.h> #include&l ...
- POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...
- HDU 1005 Number Sequence:矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 题意: 数列{f(n)}: f(1) = 1, f(2) = 1, f(n) = ( A*f(n ...
- HDU - 6198 number number number(规律+矩阵快速幂)
题意:已知F0 = 0,F1 = 1,Fn = Fn - 1 + Fn - 2(n >= 2), 且若n=Fa1+Fa2+...+Fak where 0≤a1≤a2≤⋯≤a,n为正数,则n为mj ...
- UVA - 10689 Yet another Number Sequence (矩阵快速幂求斐波那契)
题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(1 ...
- ZOJ 2974 矩阵快速幂
题意 给出n个杯子与初始其中有多少水 “同时”进行如下指令 将其中的水同时分入所指定的杯子 进行x次后 输出杯子剩余水量 队友想出应该是一道快速幂 但并不是过去的用初始杯子的水组成的矩阵乘某个矩阵 可 ...
随机推荐
- Xshell6设置字体大小
Xshell可以远程连接到linux服务器,但有时终端字体太小,可以按照如下步骤修改字体大小: 菜单栏: 文件-属性-外观,修改字体大小后点击确定即可(也可以使用ALT+P快捷键打开属性).
- 深入浅出 JVM ClassLoader
# 前言 在 JVM 综述里面,我们说,JVM 做了三件事情,Java 程序的内存管理, Java Class 二进制字节流的加载(ClassLoader),Java 程序的执行(执行引擎).我们也说 ...
- 你不知道的Linux(持续更新中)
1.关于GNU.Linux.GNU/Linux三者的关系 GNU 项目创始于一九八四年,旨在开发一个类似 Unix ,且为自由软件的完整的操作系统: GNU 系统.(也可把GNU看成一个自由软件工程) ...
- “未能加载文件或程序集“XXX”或它的某一个依赖项。试图加载格式不正确的程序”问题的解决
发布到win7 64位旗舰版iis上时,报:“未能加载文件或程序集“BC.Common”或它的某一个依赖项.试图加载格式不正确的程序”. 该DLL的本地复制没有设置为true(在项目引用里找到该引用, ...
- easyui的datagrid为何无法显示json数据
因为easyui的datagrid要求数据JSON必须是如下格式:{"total":0,"rows":[]}其中total表示总的数据行数,rows是当前页的数 ...
- LeetCode 键盘行-Python3.7<四>
500. 键盘行 题目网址:https://leetcode-cn.com/problems/keyboard-row/hints/ 给定一个单词列表,只返回可以使用在键盘同一行的字母打印出来的单词. ...
- Python全栈学习_day002作业
Day2作业及默写 1.判断下列逻辑语句的True,False. 1)1 > 1 or 3 < 4 or 4 > 5 and 2 > 1 and 9 > 8 or 7 & ...
- 初学HTML-7
表单中的一些标签 label标签:让文字和输入框进行绑定,即,点击文字,输入框可以开始输入(默认文字和输入框没有关系,不会聚焦) 格式:<form action=""> ...
- Spider-one
1. 爬虫是如何采集网页数据的: 网页的三大特征: -1. 每个网页都有自己的 URL(统一资源定位符)地址来进行网络定位. -2. 每个网页都使用 HTML(超文本标记语言)来描述页面信息. -3. ...
- 【代码笔记】Web-HTML-表格
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...