当使用Python中的pandas库时,merge函数是用于合并(或连接)两个数据框(DataFrame)的重要工具。它类似于SQL中的JOIN操作,允许你根据一个或多个键(key)将两个数据框连接起来。

merge函数的基本语法如下:

pd.merge(
left, # 要合并的左侧 DataFrame
right, # 要合并的右侧 DataFrame
how='inner', # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
on=None, # 用于连接的列名,必须存在于左侧和右侧 DataFrame 中
left_on=None, # 左侧 DataFrame 用于连接的列名
right_on=None, # 右侧 DataFrame 用于连接的列名
left_index=False, # 如果为 True,则使用左侧 DataFrame 的索引作为连接键
right_index=False, # 如果为 True,则使用右侧 DataFrame 的索引作为连接键
suffixes=('_x', '_y'), # 字符串后缀,用于重叠列名的处理
sort=False, # 根据连接键对合并后的数据进行排序
copy=True, # 如果为 False,可以提高性能,但是在某些情况下会修改原始数据
)

基本用法

merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'])   # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)

指定不同的列名

merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)

处理重复列名,相同列名加后缀

merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)

根据索引进行合并

merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)

开启一列标记列,标记数据来源

merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

完整代码

import pandas as pd

# 读取两个 Excel 文件
left_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx',sheet_name='Sheet2')
right_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据2.xlsx',sheet_name='Sheet2') #基本用法
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称']) # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df) #指定不同的列名
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df) #处理重复列名,相同列名加后缀
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df) #根据索引进行合并
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df) #开启一列标记列,标记数据来源
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)

数据一:

数据二:

Python利用pandas进行数据合并的更多相关文章

  1. Python利用pandas处理数据后画图

    pandas要处理的数据是一个数据表格.代码: 1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt ...

  2. python 利用pandas导入数据

  3. Python利用pandas处理Excel数据的应用

    Python利用pandas处理Excel数据的应用   最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做 ...

  4. python-数据描述与分析2(利用Pandas处理数据 缺失值的处理 数据库的使用)

    2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它 ...

  5. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  6. python利用mongodb上传图片数据 : GridFS 与 bson两种方式

    利用mongodb保存图片通常有两种方法,一种是将图片数据转化为二进制作为字典的键值对进行保存,另一种是利用mongodb提供的GridFS进行保存,两者各有利弊.性能方面的优劣未曾测试,无法进行评价 ...

  7. 数据分析入门——pandas之数据合并

    主要分为:级联:pd.concat.pd.append 合并:pd.merge 一.numpy级联的回顾 详细参考numpy章节 https://www.cnblogs.com/jiangbei/p/ ...

  8. pandas 之 数据合并

    import numpy as np import pandas as pd Data contained in pandas objects can be combined together in ...

  9. Python 利用二分法查询数据

    一. 二分法的适用条件 二分法查找适用于数据量较大时, 但是数据需要先排好顺序. 优点: 二分法查找效率特别高 缺点: 二分法只适用于有序序列 二. 二分法的主要思想是:设查找的数组区间为array[ ...

  10. 【NumPy】Python利用linspace进行数据采样

    情景 假设有一堆长度为1000的数据,我现在只想要其中800个并且要求整体趋势一样,那就可以试试使用linspace进行等间距的采样. 简介 linspace(start, stop, num=50, ...

随机推荐

  1. pyinstaller 安装报错,环境是python3.7

    在pycharm中安装,和直接输入pip install pyinstaller 均报错, 最后,输入pip install -i https://pypi.douban.com/simple/ py ...

  2. 自动刷新服务:nodemon

    安装命令: npm install -g nodemon 运行命令: nodemon server.js 运行结果:

  3. mysql 命令安装

    1.   mysql  下载安装好压缩文件,下面我们进入正题,少废话. 09:39:112023-08-05 先到 mysql 官方网站下载:https://dev.mysql.com/downloa ...

  4. SpringCloudAlibaba框架学习

    遇到问题找了各种办法都没有解决,就reload maven,再不行就重启idea,重启电脑.(有奇效,我好几次就这么解决的,可能是我电脑配置太拉了) 注册中心 - Nacos 配置文件优先级:本地配置 ...

  5. Go Web项目结构 + 基础代码

    Go Web工程 下面是项目的包图,可以通过包图来理清项目包的结构. Go Web工程 下面是项目的包图,可以通过包图来理清项目包的结构. 因为我是从Java转过来的,其实这种包的结构与Java的类似 ...

  6. AI绘画StableDiffusion实操教程:可爱头像奶茶小女孩(附高清图片)

    本教程收集于:AIGC从入门到精通教程汇总 今天继续分享AI绘画实操教程,如何用lora包生成超可爱头像奶茶小女孩 放大高清图已放到教程包内,需要的可以自取. 欢迎来到我们这篇特别的文章--<A ...

  7. API接口设计规范

    说明:在实际的业务中,难免会跟第三方系统进行数据的交互与传递,那么如何保证数据在传输过程中的安全呢(防窃取)?除了https的协议之外,能不能加上通用的一套算法以及规范来保证传输的安全性呢? 下面我们 ...

  8. 当开源项目 Issue 遇到了 DevChat

    目录 1. 概述 2. Bug 分析与复现 3. Bug 定位与修复 4. 代码测试 5. 文档更新 6. 提交 Commit 7. 总结 1. 概述 没错,又有人给 GoPool 项目提 issue ...

  9. Burp Suite抓包工具配置代理手机抓取数据包

    工作中很多手机上的问题因为环境差异导致无法在pc设备上完整的模拟真实物理手机,因此需要方法能抓取到手机设备上所有数据包发送详情.发现了这个好用的数据包抓取工具Burp Suite. 一.配置流程: 1 ...

  10. SQL Server查询数据库中的表

    SQL Server查询数据库中的表 SSMS中用不了MySQL中的show 查询当前数据库中所有表名: SELECT name FROM sysobjects WHERE (xtype = 'U') ...