Python利用pandas进行数据合并
当使用Python中的pandas库时,merge函数是用于合并(或连接)两个数据框(DataFrame)的重要工具。它类似于SQL中的JOIN操作,允许你根据一个或多个键(key)将两个数据框连接起来。
merge函数的基本语法如下:
pd.merge(
left, # 要合并的左侧 DataFrame
right, # 要合并的右侧 DataFrame
how='inner', # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
on=None, # 用于连接的列名,必须存在于左侧和右侧 DataFrame 中
left_on=None, # 左侧 DataFrame 用于连接的列名
right_on=None, # 右侧 DataFrame 用于连接的列名
left_index=False, # 如果为 True,则使用左侧 DataFrame 的索引作为连接键
right_index=False, # 如果为 True,则使用右侧 DataFrame 的索引作为连接键
suffixes=('_x', '_y'), # 字符串后缀,用于重叠列名的处理
sort=False, # 根据连接键对合并后的数据进行排序
copy=True, # 如果为 False,可以提高性能,但是在某些情况下会修改原始数据
)
基本用法
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称']) # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df)
指定不同的列名
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df)
处理重复列名,相同列名加后缀
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df)
根据索引进行合并
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df)
开启一列标记列,标记数据来源
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)
完整代码
import pandas as pd # 读取两个 Excel 文件
left_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据1.xlsx',sheet_name='Sheet2')
right_df = pd.read_excel('C:\\Users\\liuchunlin2\\Desktop\\数据2.xlsx',sheet_name='Sheet2') #基本用法
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称']) # 连接方式,包括 'left', 'right', 'outer', 'inner',默认为 'inner'
print(merged_df) #指定不同的列名
merged_df = pd.merge(left_df, right_df, how='outer', left_on='店铺名称', right_on='店铺名称2')
print(merged_df) #处理重复列名,相同列名加后缀
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称'], suffixes=('_left', '_right'))
print(merged_df) #根据索引进行合并
merged_df = pd.merge(left_df, right_df, how='outer', left_index=True, right_index=True)
print(merged_df) #开启一列标记列,标记数据来源
merged_df = pd.merge(left_df, right_df, how='outer', on=['店铺名称','订单号'], indicator=True)
print(merged_df)
数据一:

数据二:

Python利用pandas进行数据合并的更多相关文章
- Python利用pandas处理数据后画图
pandas要处理的数据是一个数据表格.代码: 1 import pandas as pd 2 import numpy as np 3 import matplotlib.pyplot as plt ...
- python 利用pandas导入数据
- Python利用pandas处理Excel数据的应用
Python利用pandas处理Excel数据的应用 最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做 ...
- python-数据描述与分析2(利用Pandas处理数据 缺失值的处理 数据库的使用)
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- python利用mongodb上传图片数据 : GridFS 与 bson两种方式
利用mongodb保存图片通常有两种方法,一种是将图片数据转化为二进制作为字典的键值对进行保存,另一种是利用mongodb提供的GridFS进行保存,两者各有利弊.性能方面的优劣未曾测试,无法进行评价 ...
- 数据分析入门——pandas之数据合并
主要分为:级联:pd.concat.pd.append 合并:pd.merge 一.numpy级联的回顾 详细参考numpy章节 https://www.cnblogs.com/jiangbei/p/ ...
- pandas 之 数据合并
import numpy as np import pandas as pd Data contained in pandas objects can be combined together in ...
- Python 利用二分法查询数据
一. 二分法的适用条件 二分法查找适用于数据量较大时, 但是数据需要先排好顺序. 优点: 二分法查找效率特别高 缺点: 二分法只适用于有序序列 二. 二分法的主要思想是:设查找的数组区间为array[ ...
- 【NumPy】Python利用linspace进行数据采样
情景 假设有一堆长度为1000的数据,我现在只想要其中800个并且要求整体趋势一样,那就可以试试使用linspace进行等间距的采样. 简介 linspace(start, stop, num=50, ...
随机推荐
- Linux 软件包:man pages
有时候,man ls 发现没有帮助文档,可以快递打开浏览器检索 "man ls" . # yum list | grep man | grep pages gl-manpages. ...
- C# LinearGradientBrush使用报错
今天在学习C#时使用 LinearGradientBrush 属性发生了如上错误,发现引用其时并没有提示 在添加了此命名空间后恢复正常
- Kitex微服务开发实践(ETCD服务注册)
服务注册通常用于分布式系统或微服务架构中,是一种用于管理和发现这些分布式服务的机制.它的目标是让服务能够动态地找到其他服务,并能够与其进行通信,而无需显式地配置其位置信息 本文简单讲述使用etcd进行 ...
- python语法笔记
最近抽时间恶补了一下python语法,做个笔记. 比较运算符的结果为bool类型,示例:a=10,b=20 print("a>b吗?",a>b) 运行结果: ...
- 免费拥有自己的 Github 资源加速器
TurboHub 是一个免费的 Github 资源加速下载站点,可以帮助你快速下载 Github 上的资源.其核心逻辑是通过 Azure Static Web Apps 服务和 Azure Funct ...
- 微服务集成redis并通过redis实现排行榜的功能
默认你已经看过我之前的教程了,并且拥有上个教程完成的项目, 之前的教程 https://www.cnblogs.com/leafstar/p/17638933.html 由于redis的安装网上教程很 ...
- 文心一言 VS 讯飞星火 VS chatgpt (79)-- 算法导论7.4 4题
四.请用go语言,证明:RANDOMIZED-QUICKSORT 期望运行时间是 Ω(nlgn). 文心一言: 首先,为了证明RANDOMIZED-QUICKSORT的期望运行时间是Ω(nlg n), ...
- Ascend C保姆级教程:我的第一份Ascend C代码
本文分享自华为云社区<Ascend C保姆级教程:我的第一份Ascend C代码>,作者:昇腾CANN . Ascend C是昇腾AI异构计算架构CANN针对算子开发场景推出的编程语言,原 ...
- 微信小程序2--WXML与WXSS
编辑WXML文件 我们在开发者工具里打开之前修改的模板小程序home文件夹下的home.wxml,里面有如下代码 <!--pages/home/home.wxml--> <text& ...
- JWT(Json Wen Token)原理剖析
JWT(即json web token),大家先看下面这张图 大家可以观察到,jwt String就是生成后的jwt字符集,其中有两个 "."(注意:jwt校验会对".& ...