最近在做一个 练习 ,然后看到了 调和级数 这个东西,说实话这东西谁能在考场上想到,平日还是要多积累。

开门见山

但是我们今天只证这个东西:

\[\sum^{n}_{i = 1} \frac{1}{n}=\ln n+\gamma+\varepsilon_n
\]

其中 \(\gamma\) gamma 是欧拉常数(约等于0.57721566490153286060651209,关于欧拉常数,我找时间补上),\(\varepsilon_n\) varepsilon 约等于 \(\frac{1}{2n}\) 。\(\varepsilon_n\) 是一个误差项,用来表示误差的大小或者近似的偏差。在这个等式中,\(\varepsilon_n\) 可以表示该和式与其近似值 \(\ln n + \gamma\) 之间的误差。具体的值会根据近似方法和逼近程度而有所不同。

好了,要怎么证明呢?

证明

要证明公式 \(\sum^{n}_{i = 1} \frac{1}{i}=\ln n+\gamma+\varepsilon_n\) ,我们可以使用数学归纳法。

首先,我们先验证当 n = 1 时,公式是否成立。当 n = 1 时,数列中只有一个数 \(\frac{1}{1} = 1\) 。我们将这个数代入公式的左边,得到 \(\sum^{1}_{i = 1} \frac{1}{i} = 1\) ,然后代入公式的右边,得到 \(\ln 1 + \gamma + \varepsilon_1\) 。

\(\ln 1\) 等于 0,再加上常数 \(\gamma\) 和误差项 \(\varepsilon_1\) ,所以公式右边也等于 1。因此,当 n = 1 时,公式两边相等。

然后,我们要假设当 n = k 时,公式成立。也就是假设 \(\sum^{k}_{i = 1} \frac{1}{i} = \ln k + \gamma + \varepsilon_k\) 。

接下来,我们要证明当 n = k+1 时,公式也成立。也就是证明 \(\sum^{k+1}_{i = 1} \frac{1}{i} = \ln (k+1) + \gamma + \varepsilon_{k+1}\) 。

当 n = k+1 时,我们有:

\(\sum^{k+1}_{i = 1} \frac{1}{i} = \sum^{k+1}_{i = 1} \frac{1}{i} + \frac{1}{k+1}\)

现在,我们可以使用之前的假设,将右边的公式展开,得到 \(\ln k + \gamma + \varepsilon_k + \frac{1}{k+1}\) 。

我们知道 \(\ln(n+1) = \ln n + \ln(1 + \frac{1}{n})\)。

证明 $\ln(n+1) = \ln n + \ln(1 + \frac{1}{n})$
\[\begin{aligned}
\ln n + \ln(1 + \frac{1}{n}) &= \ln n + \ln(\frac{n + 1}{n}) \\
&= \ln n + \ln(n+1) - \ln n \\
&= \ln (n+1)
\end{aligned}
\]
证明 $\ln(\frac{n + 1}{n}) = \ln(n+1) - \ln n$

一般的,$\ln \frac{a}{b} = \ln a - \ln b$

我们设 \(x = \ln a\),\(y = \ln b\),那么根据对数的定义有:\(a = e^x\),\(b = e^y\)

显然有:\(\frac{a}{b}=e^{x-y}\)

即:\(\ln \frac{a}{b} = x - y = \ln a - \ln b\)

利用泰勒级数展开 \(\ln(1 + x)\),我们得到:

\(\ln(1 + \frac{1}{n}) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} - \cdots = \varepsilon_{n+1}\)

其中 \(\varepsilon_{n+1}\) 表示一个无穷小量,当 \(n \rightarrow \infty\) 时,无穷小量趋近于 0。

将上述结果代入到等式中,我们有:

\(\sum^{n+1}_{i = 1} \frac{1}{i} = \ln n+\gamma+\varepsilon_n + \frac{1}{n+1} = \ln(n+1)+\gamma+\varepsilon_{n+1}\)

因此,我们证明了当公式对于 \(n = k\) 成立时,它也对 \(n = k + 1\) 成立。根据数学归纳法,我们可以得出公式对于所有正整数 \(n\) 成立。

因此,我们证明了公式 \(\sum^{n}_{i = 1} \frac{1}{n}=\ln n+\gamma+\varepsilon_n\) 的正确性。

调和级数发散率证明|欧拉常数|ln n+gamma+varepsilon_k证明|sigma(1/i)的更多相关文章

  1. ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭)

    欧拉函数,用φ(n)表示 欧拉函数是求小于等于n的数中与n互质的数的数目 辣么,怎么求哩?~(-o ̄▽ ̄)-o 可以先在1到n-1中找到与n不互质的数,然后把他们减掉 比如φ(12) 把12质因数分解 ...

  2. LDA-math-神奇的Gamma函数

    http://cos.name/2013/01/lda-math-gamma-function/ 1. 神奇的Gamma函数1.1 Gamma 函数诞生记学高等数学的时候,我们都学习过如下一个长相有点 ...

  3. Kl 证明 凸函数

    回到随机变量传输问题,假设传输中我们不知道具体 分布情况(unknown),我们用一个已知的分布 ,来模拟它,那么在这种情况下如果我们利用 尽可能高效的编码,那么我们平均需要多少额外的信息量来描述x呢 ...

  4. Computer Science Theory for the Information Age-6: 学习理论——VC定理的证明

    VC定理的证明 本文讨论VC理论的证明,其主要内容就是证明VC理论的两个定理,所以内容非常的枯燥,但对于充实一下自己的理论知识也是有帮助的.另外,VC理论属于比较难也比较抽象的知识,所以我总结的这些证 ...

  5. 一些求和式的估算 & 杜教筛时间复杂度证明

    本文内容概要: \(A=\sum\limits_{i=1}^n\dfrac1{\sqrt i}=1+\dfrac1{\sqrt2}+\cdots+\dfrac1{\sqrt n}\) \(O(\sqr ...

  6. CAP原理的证明

    CAP概述 C: Consistency 一致性 A: Availability 可用性 P:Partition Tolerance分区容错性 CAP理论的核心是:一个分布式系统不可能同时很好的满足一 ...

  7. 证明tmult_ok的正确性

    csapp page124. practice problem 2.35 /* Determine whether arguments can be multiplied without overfl ...

  8. 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去

    写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...

  9. 康复计划#5 Matrix-Tree定理(生成树计数)的另类证明和简单拓展

    本篇口胡写给我自己这样的什么都乱证一通的口胡选手 以及那些刚学Matrix-Tree,大致理解了常见的证明但还想看看有什么简单拓展的人- 大概讲一下我自己对Matrix-Tree定理的一些理解.常见版 ...

  10. IPFS:Filecoin和复制证明

    这篇文章主要来讲一下Filecoin协议里面的复制证明(Proof of Replication),由于协议涉及到很多概念,可能看起来有点晕乎乎的,小编尽量把复杂问题简单化 ,力求给大家做大普及IPF ...

随机推荐

  1. C#解析匿名JSON数据

    C#解析匿名JSON数据 使用工具:Newtonsoft.Json 使用方式: //模拟数据 var jsonData = JsonConvert.SerializeObject(new { Name ...

  2. 如何编写难以维护的React代码?耦合组件

    如何编写难以维护的React代码?耦合组件 在许多项目中,我们经常会遇到一些难以维护的React代码.其中一种常见的情况是:子组件直接操作父组件方法,从而导致父子组件深度耦合.这样的实现让子组件过于依 ...

  3. HBase Compaction 原理与线上调优实践

    作者:vivo 互联网存储技术团队- Hang Zhengbo 本文对 HBase Compaction 的原理.流程以及限流的策略进行了详细的介绍,列举了几个线上进行调优的案例,最后对 Compac ...

  4. DHorse v1.3.0 发布,基于k8s的发布平台

    综述 DHorse是一个简单易用.以应用为中心的云原生DevOps系统,具有持续集成.持续部署.微服务治理等功能,无需安装依赖Docker.Maven.Node等环境即可发布Java.Vue.Reac ...

  5. BTC中的数据结构

    BTC中的数据结构 普通指针 普通指针存储的是某个结构体在内存中的地址(假如P是指向一结构体的指针,那么P里面存放的就是该结构体在内存中的起始位置) Hash pointer(哈希指针) 对于如下的节 ...

  6. 【技术积累】Linux中的命令行【理论篇】【四】

    ar命令 命令介绍 ar命令是Linux系统中的一个工具,用于创建.修改和提取静态库文件(archive files).静态库文件是一组已编译的目标文件的集合,可以被链接到可执行文件中. 命令说明 a ...

  7. 明白error类型让你更快定位开发报错

    在javascript中,开发遇到的项目报错,很多时候都是通过 Error 这个类来展示的,清楚Error的类型可以更好定位项目中的问题 Error的类型 Error Error是所有其它错误的父类, ...

  8. 手工搭建并配置apache,php,mysql环境服务器

    1,安装apache2.4: 从apache官网中下载windows版本的apache二进制文件,解压 打开apache目录中的bin目录,在其中打开cmd窗口,使用命令: httpd -k inst ...

  9. 微服务集成RabbitMq保姆级教程

    本文通过简单的示例代码和说明,让读者能够了解微服务如何集成RabbitMq 之前的教程 https://www.cnblogs.com/leafstar/p/17641358.html 在这里我将介绍 ...

  10. 【译】Silverlight 不会消亡 XAML for Blazor 到来

    Userware 正在使用早已消失的.令人怀念的微软 Silverlight Web 开发平台的遗留来支持其新的"XAML for Blazor"产品,该产品允许 .NET 开发人 ...