二分法是搜索算法中极其典型的方法,其要求输入序列有序并可随机访问。算法思想为

输入:有序数组nums,目的数值target

要求输出:如果target存在在数组中,则输出其index,否则输出-1

  1. 将原数组通过[left,right]两个索引划分范围,初值left=0,right=数组的最后一个元素
  2. 当left <= right时
    1. middle = (left + right)/2
    2. 判断nums[middle]是不是要查找的target,如果是则返回结果
    3. 判断nums[middle]> target,证明要查找的target在左边,因此right = middle - 1
    4. 判断nums[middle]< target,证明要查找的target在右边,因此left = middle + 1
  3. 没有查找到return -1。

形如下图:

传统的二分法代码如下:

func binarySearch(nums []int, target int) int {
left, right := 0, len(nums)-1
for left <= right {
middle := (left + right) / 2
if nums[middle] == target {
return middle
} else if nums[middle] > target {
right = middle - 1
} else {
left = middle + 1
}
}
return -1
}

这里要注意两个问题:

  1. 上述算法中的第2步中=的判断,即for left <= right还是for left < right
  2. 上述算法2.2-2.4中的判断条件以及下一次查找区间的设置
  3. 返回值代表什么意思

for left<= right 中 = 的判断

首先对于第一个问题,=是否应该存在,取决于对于二分查找的初始化定义,例如:

  1. 如果二分查找遍历的区间采用[left,right](数学中的双闭区间)的形式,考虑left==right=成立的情况,则表示区间内只有单个操作数,这种情况还是需要处理,否则无法通过其余方式表示这种情况,所以此时=是必须的。
  2. 如果二分查找遍历的区间采用[left,right)的形式,考虑left==right=成立的情况,事实证明,这种情况并不应该存在,我们无法用[i,i)表示任何一个区间,所以,这种情况下,=就不是必须的。

判断条件以及下一次查找区间的设置

然后考察对于第二个问题,判断条件以及下一次查找区间应该如何设置

注意:二分查找是一个经典的查找算法,其目的是查找到指定的位置或者值,并不仅限于查找到等于target的index这一种情况。

但无论怎样,二分查找本身有一个固定模式,即二分,就是从middle处将区间[left,right]分成两份,然后根据middle的情况查找(或者更新新的区间),因此,我们只需要考虑清楚如下三种条件时要怎么处理即可:

  1. 当遍历到nums[middle] == target时应该怎样处理(新的查找区间是什么),即当前值等于目标值
  2. 当遍历到nums[middle] > target时应该怎样处理(新的查找区间是什么),即当前值大于目标值
  3. 当遍历到nums[middle] < target时应该怎样处理(新的查找区间是什么),即当前值小于目标值

讨论完上述两个问题,其实二分法就有了一个固定的框架:

func binarySearch(nums []int, target int) int {
left, right := 0, len(nums)-1
for left <= right {
middle := (left + right) / 2
if nums[middle] == target {
// 当前值等于目标值时,如何处理(新的查找区间是什么)
} else if nums[middle] > target {
// 当前值大于目标值时,如何处理(新的查找区间是什么)
} else {
// 当前值小于目标值时,如何处理(新的查找区间是什么)
}
}
// 考虑返回值的意义
return
}

返回值的含义

最后我们讨论返回值的含义这一话题。在传统的二分查找中,只有在两种情况下会返回:

  1. 查找到目标target,返回查找到的index
  2. 未查找到目标target,返回-1。(即文章最起始处 步骤3的含义)

这里返回值的含义表示target在nums中的index,该值只会出现在nums[middle]==target这一条件下。然而,刚才提到了二分查找不总是处理等式条件,因此我们总要思考两种返回值的含义:

  1. nums[middle]==target,这时return代表的是什么?
  2. 数组中不存在target,此时return的是什么,此时left、right代表什么?

这里我们举一个稍稍复杂一点的例子对二分查找进行分析。

搜索插入位置

题目要求如下:

这个问题要求返回两种返回值:

  1. 在数组中找到目标值,并返回其索引
  2. 如果目标值不存在于数组中,返回它将会被按顺序插入的位置

其中对于情况1,传统的二分查找算法就可以解决,而情况2,则需要借助于本部分要讲解的返回值的含义

对于传统的二分法:

func binarySearch(nums []int, target int) int {
left, right := 0, len(nums)-1
for left <= right {
middle := (left + right) / 2
if nums[middle] == target {
return middle
} else if nums[middle] > target {
right = middle - 1
} else {
left = middle + 1
}
}
return -1
}

如果target能在nums数组中查找到,必定最终查找到一个[i,i]类型的区间,即区间中只有一个数字,否则区间就要再次进行二分。例如:如果要在下列数组中查找4所在的位置,查找过程如下,第三步时,查找区间为[2,3],有两个值,无法确定答案,则需要再次进行一次查找:

target == 4
nums 1 2 3 4
index 0 1 2 3
1 l r
2 l r
3 l r
4 lr

那么最终我们处理的情况必定是对于区间[left,right]中,其中left == right,因此middle == left == right,此时nums[middle]和target的关系。

  • nums[middle] > target,则需要从middle左侧继续寻找,right = middle - 1,注意此时left = middle,left > right
  • nums[middle] < target,则需要从middle右侧继续寻找,left = middle + 1,注意此时right = middle,left > right

所以此时,left指向的永远是大的那个值,right是小的那个值(因为left <= right时,循环不会终止,循环终止条件为left > right,根据数组的有序性,nums[left] > nums[right])。

最后,我们考察该题,对于数组nums,如果目标值不在其中,那么其最终查找到的值只有两种情况:

  1. nums[middle] < target,此时nums[middle]应该是第一个小于target的值,如果要查找target所在位置,应该返回大于middle的index,即left
  2. nums[middle] > target,此时nums[middle]应该是第一个大于target的值,如果要查找target所在位置,应该返回等于middle的index,用target替换middle位置的值,即left

因此,该题的结果,只需要修改传统二分查找的最后一行:

func binarySearch(nums []int, target int) int {
left, right := 0, len(nums)-1
for left <= right {
middle := (left + right) / 2
if nums[middle] == target {
return middle
} else if nums[middle] > target {
right = middle - 1
} else {
left = middle + 1
}
}
return left
}

在排序数组中查找元素的第一个和最后一个位置

题目要求如下:

注意这里查找的是元素第一次和最后一次出现的位置,这里我们以查找第一次出现的位置举例,后者同理。

考察我们在判断条件以及下一次查找区间的设置中强调的,考察二分查找的三种情况:

情况 分析 操作
nums[middle] == target时,即当前值等于目标值 第一次出现的位置可能在当前值前面 right = middle - 1
nums[middle] > target时,即当前值大于目标值 第一次出现的位置在当前值前面 right = middle - 1
nums[middle] < target时,即当前值小于目标值 第一次出现的位置在当前值后面 left = middle + 1

与之前不同的是当nums[middle] == target时,不再有返回值了,那么考虑最后返回值的含义,最终left > right时情况有如下3种:

情况 分析 操作
nums[middle] == target 此时,middle前的值必定<middle,而不是等于(只要等于,考虑上表的情况1,会使right = middle - 1) return left
nums[middle] > target 此情况不存在,因为如果有这种情况会继续使right=middle-1 不进行操作
nums[middle] < target 此时middle必定是target前的第一个元素 return left

经过上面的分析后,可以清晰的写出代码:

    l, r := 0, len(nums)-1
for l <= r {
m := (l + r) / 2
if nums[m] >= target {
r = m - 1
} else {
l = m + 1
}
}
result := l

而查找元素出现的最后一个位置,只需要反过来,最后return right即可。代码如下:

    l, r: = 0, len(nums)-1
for l <= r {
m := (l + r) / 2
if nums[m] <= target {
l = m + 1
} else {
r = m - 1
}
}
result := r

总结

本文详细分析了二分查找的所有细节,对于二分查找处理的问题,我们常常需要更加关注本文讨论的后两个问题:

  1. 判断条件以及下一次查找区间的设置
  2. 返回值的含义

最后填充模版即可。

func binarySearch(nums []int, target int) int {
left, right := 0, len(nums)-1
for left <= right {
middle := (left + right) / 2
if nums[middle] == target {
// 当前值等于目标值时,如何处理(新的查找区间是什么)
} else if nums[middle] > target {
// 当前值大于目标值时,如何处理(新的查找区间是什么)
} else {
// 当前值小于目标值时,如何处理(新的查找区间是什么)
}
}
// 考虑返回值的意义
return
}

Leetcode刷题笔记——二分法的更多相关文章

  1. LeetCode刷题笔记和想法(C++)

    主要用于记录在LeetCode刷题的过程中学习到的一些思想和自己的想法,希望通过leetcode提升自己的编程素养 :p 高效leetcode刷题小诀窍(这只是目前对我自己而言的小方法,之后会根据自己 ...

  2. 18.9.10 LeetCode刷题笔记

    本人算法还是比较菜的,因此大部分在刷基础题,高手勿喷 选择Python进行刷题,因为坑少,所以不太想用CPP: 1.买股票的最佳时期2 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. ...

  3. LeetCode刷题笔记 - 12. 整数转罗马数字

    学好算法很重要,然后要学好算法,大量的练习是必不可少的,LeetCode是我经常去的一个刷题网站,上面的题目非常详细,各个标签的题目都有,可以整体练习,本公众号后续会带大家做一做上面的算法题. 官方链 ...

  4. LeetCode刷题笔记 - 2022

    这篇博客集中整理在LeetCode的刷题记录,方便查阅 258. 各位相加 - 力扣(LeetCode) (leetcode-cn.com) 代码 class Solution { public: i ...

  5. Leetcode刷题笔记(双指针)

    1.何为双指针 双指针主要用来遍历数组,两个指针指向不同的元素,从而协同完成任务.我们也可以类比这个概念,推广到多个数组的多个指针. 若两个指针指向同一数组,遍历方向相同且不会相交,可以称之为滑动窗口 ...

  6. LeetCode刷题笔记(1-9)

    LeetCode1-9 本文更多是作为一个习题笔记,没有太多讲解 1.两数之和 题目请点击链接 ↑ 最先想到暴力解法,直接双循环,但是这样复杂度为n平方 public int[] twoSum(int ...

  7. leetcode刷题笔记

    (1)Best Time to Buy and Sell Stock Total Accepted: 10430 Total Submissions: 33800My Submissions Say ...

  8. leetcode刷题笔记08 字符串转整数 (atoi)

    题目描述 实现 atoi,将字符串转为整数. 在找到第一个非空字符之前,需要移除掉字符串中的空格字符.如果第一个非空字符是正号或负号,选取该符号,并将其与后面尽可能多的连续的数字组合起来,这部分字符即 ...

  9. Leetcode刷题笔记——查找

    33.Search in Rotated Sorted Array 题目描述: 给定一个被翻转的整型升序数组nums,数组中无重复元素,如[4,5,6,7,0,1,2],和一个整数target.要求在 ...

  10. LeetCode刷题笔记(1)常用知识点

    1.Integer.parseInt(String s, int radix)方法的作用是:将radix进制的字符串s转化成10进制的int型数字并返回. Integer.valueof(String ...

随机推荐

  1. CMD 常用命令总结

    CMD 常用命令总结 小技巧: 输入 help,查看帮助: Tab 键,自动补全: 上/下方向键,查看历史命令: 右键窗口标题栏 -> 属性,可以修改外观样式. # 关机.重启.注销.休眠.定时 ...

  2. Simple Factory Pattern 简单工厂模式简介与 C# 示例【创建型】【设计模式来了】

    〇.简介 1.什么是简单工厂模式? 一句话解释:   客户类和工厂类严格分工,客户类只需知道怎么用,处理逻辑交给工厂类. 简单工厂模式(Simple Factory Pattern)是日常开发中常用的 ...

  3. DASCTF二进制专项部分Writeup

    easynote create:堆大小可以任意分配只要不超过0xFFF create()  unsigned __int64 create() { int i; // [rsp+0h] [rbp-20 ...

  4. P3498 [POI2010]KOR-Beads 题解

    前言: 最近在做哈希的题,发现了这道好题,看题解里很多大佬的方法都很巧妙,自己就发一个较为朴素的方法吧. 题意: 题目传送门 给你一个序列,需要求出数 k,使划分的子串长度为 k 时,不同的子串数量最 ...

  5. JavaCV的摄像头实战之十二:性别检测

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是<JavaCV的摄像头实战> ...

  6. 根据模板动态生成word(一)使用freemarker生成word

    @ 目录 一.准备模板 1.创建模板文件 2.处理模板 2.1 处理普通文本 2.2 处理表格 2.3 处理图片 二.项目代码 1.引入依赖 2.生成代码 三.验证生成word 一.准备模板 1.创建 ...

  7. 【Shell】字符串

    单引号和双引号 shell 字符串可以用单引号 '',也可以用双引号 "",也可以不用引号. 单引号的特点 单引号里不识别变量 单引号里不能出现单独的单引号(使用转义符也不行),但 ...

  8. Doris写入数据异常提示actual column number in csv file is less than schema column number

    版本信息: Flink 1.17.1 Doris 1.2.3 Flink Doris Connector 1.4.0 写入方式 采用 String 数据流,依照社区网站的样例代码,在sink之前将数据 ...

  9. 利用Aspose.Word对Word文件添加印章处理以及实现业务数据的替换处理

    有时候,我们在处理大量文档的时候,需要批量给Word文档添加印章处理,方便打印操作,本篇随笔介绍利用Aspose.Word对Word文件添加印章处理以及实现业务数据的替换处理. 1.利用Aspose. ...

  10. 基于 Spark 的物流企业数据仓库 的设计与实现

    1.设计和实现了一种基于 Spark 的分布式 ETL 系统,包括利用 Spark 抽取.转换清洗和加载数据的具体过程. 2.设计和实现了基于 Spark 的物流企业数据仓库,包括物流企业数据仓库的分 ...