智能体Agent-书生浦语大模型实战营学习笔记6&大语言模型10
大语言模型学习:10.智能体Agent
书生浦语大模型实战营学习笔记6
定义

即P(感知)—> P(规划)—>A(行动)。类似人类「做事情」的过程,Agent的核心功能,可以归纳为三个步骤的循环:感知(Perception)、规划(Planning)和行动(Action)。感知(Perception)是指Agent从环境中收集信息并从中提取相关知识的能力,规划(Planning)是指Agent为了某一目标而作出的决策过程,行动(Action)是指基于环境和规划做出的动作。其中,Policy是Agent做出Action的核心决策,而行动又通过观察(Observation)成为进一步Perception的前提和基础,形成自主地闭环学习过程。
组成

智能体范式
Agent的处理更强调workflow,更像一个flow-engineering

ReAct
ReAct是这几种范式里面最基础的。核心原理是:自己选择需要使用的工具,并使用工具获取输出。

关于ReAct,这里有个Repo实现了一个简易的ReAct Agent,可以去看看具体实现。在这里简单的提一下:
首先定义工具类。这里以谷歌搜索为例:
class Tools:
def __init__(self) -> None:
self.toolConfig = self._tools() def _tools(self):
tools = [
{
'name_for_human': '谷歌搜索',
'name_for_model': 'google_search',
'parameters': [
{
'name': 'search_query',
'description': '搜索关键词或短语',
'required': True,
'schema': {'type': 'string'},
}
],
}
]
return tools def google_search(self, search_query: str):
...
构建系统提示:直接在prompt里告诉模型可以调用的工具(
build_system_input),模型就会自己输出自己要调用的工具,之后Agent解析模型自己的输出(parse_latest_plugin_call)并调用工具(call_plugin)。TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters} Format the arguments as a JSON object."""
REACT_PROMPT = """Answer the following questions as best you can. You have access to the following tools: {tool_descs} Use the following format: Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question Begin!
""" class Agent:
def __init__(self, path: str = '') -> None:
self.path = path
self.tool = Tools()
self.system_prompt = self.build_system_input()
self.model = InternLM2Chat(path) def build_system_input(self):
tool_descs, tool_names = [], []
for tool in self.tool.toolConfig:
tool_descs.append(TOOL_DESC.format(**tool))
tool_names.append(tool['name_for_model'])
tool_descs = '\n\n'.join(tool_descs)
tool_names = ','.join(tool_names)
sys_prompt = REACT_PROMPT.format(tool_descs=tool_descs, tool_names=tool_names)
return sys_prompt def parse_latest_plugin_call(self, text):
plugin_name, plugin_args = '', ''
i = text.rfind('\nAction:')
j = text.rfind('\nAction Input:')
k = text.rfind('\nObservation:')
if 0 <= i < j: # If the text has `Action` and `Action input`,
if k < j: # but does not contain `Observation`,
text = text.rstrip() + '\nObservation:' # Add it back.
k = text.rfind('\nObservation:')
plugin_name = text[i + len('\nAction:') : j].strip()
plugin_args = text[j + len('\nAction Input:') : k].strip()
text = text[:k]
return plugin_name, plugin_args, text def call_plugin(self, plugin_name, plugin_args):
plugin_args = json5.loads(plugin_args)
if plugin_name == 'google_search':
return '\nObservation:' + self.tool.google_search(**plugin_args) def text_completion(self, text, history=[]):
text = "\nQuestion:" + text
response, his = self.model.chat(text, history, self.system_prompt)
print(response)
plugin_name, plugin_args, response = self.parse_latest_plugin_call(response)
if plugin_name:
response += self.call_plugin(plugin_name, plugin_args)
response, his = self.model.chat(response, history, self.system_prompt)
return response, his
AutoGPT
AutoGPT范式通过将任务发送给任务执行智能体A,将问题与A的结果存储至记忆,再将A的结果发送给任务创建智能体B,将B的结果存储至记忆,再将记忆发送给A,如此迭代直至符合条件。

ReWoo
ReWoo将用户输入进行计划拆分后运行,并将所有的结果整合为最后输出。

Agent与LangChain的关系
Agent属于Langchain的一部分。
智能体Agent-书生浦语大模型实战营学习笔记6&大语言模型10的更多相关文章
- C语言中setjmp与longjmp学习笔记
C语言中setjmp与longjmp学习笔记 一.基础介绍 头文件:#include<setjmp.h> 原型: int setjmp(jmp_buf envbuf) ,然而longjm ...
- 人工智能中小样本问题相关的系列模型演变及学习笔记(二):生成对抗网络 GAN
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]本文衔接上一个随笔:人工智能中小样本问题相关的系列模型演变及学习 ...
- 【学习笔记】大数据技术原理与应用(MOOC视频、厦门大学林子雨)
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可 ...
- 深度学习中的序列模型演变及学习笔记(含RNN/LSTM/GRU/Seq2Seq/Attention机制)
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻 ...
- CTR预估模型演变及学习笔记
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]如果你对智能推荐感兴趣,欢迎先浏览我的另一篇随笔:智能推荐算法演 ...
- Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...
- 基于.net的分布式系统限流组件 C# DataGridView绑定List对象时,利用BindingList来实现增删查改 .net中ThreadPool与Task的认识总结 C# 排序技术研究与对比 基于.net的通用内存缓存模型组件 Scala学习笔记:重要语法特性
基于.net的分布式系统限流组件 在互联网应用中,流量洪峰是常有的事情.在应对流量洪峰时,通用的处理模式一般有排队.限流,这样可以非常直接有效的保护系统,防止系统被打爆.另外,通过限流技术手段,可 ...
- 【大数据】Sqoop学习笔记
第1章 Sqoop简介 Sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql.postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MyS ...
- 【大数据】Kafka学习笔记
第1章 Kafka概述 1.1 消息队列 (1)点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除) 点对点模型通常是一个基于拉取或者轮询的消息传送模型,这种模型从队列中请求信息,而不是将消息 ...
- 【大数据】Scala学习笔记
第 1 章 scala的概述1 1.1 学习sdala的原因 1 1.2 Scala语言诞生小故事 1 1.3 Scala 和 Java 以及 jvm 的关系分析图 2 1.4 Scala语言的特点 ...
随机推荐
- archlinux调整分区及btrfs文件系统大小
1.防止数据丢失 有重要数据要先备份 最好现在虚拟机练习一下, 2.注意点 修改分区的初始位置似乎需要删除分区后重建分区,意味着分区数据全被删除. 所以修改分区初始位置可能需要其它办法 修改分区的初始 ...
- WPF实现树形下拉列表框(TreeComboBox)
前言 树形下拉菜单是许多WPF应用程序中常见的用户界面元素,它能够以分层的方式展示数据,提供更好的用户体验.本文将深入探讨如何基于WPF创建一个可定制的树形下拉菜单控件,涵盖从原理到实际实现的关键步骤 ...
- #线性dp#洛谷 5999 [CEOI2016]kangaroo
题目 问有多少个长度为 \(n\) 的排列满足首项为 \(st\),末项为 \(ed\), 并且 \(\forall i\in (1,n),\left[a_{i-1}<a_i \oplus a_ ...
- #交互,栈#LOJ 3005 「JOISC 2015 Day 4」Limited Memory
题目 分析 一开始想的是栈的匹配,但是位数不够,而且还忘记写memory.h, 考虑它询问次数不超过一万五千次,\(O(n^2)\)的询问是绰绰有余的, 如果每一个符号都能被匹配那整个串也能被匹配,而 ...
- #分治#JZOJ 4211 送你一颗圣诞树
题目 有\(m+1\)棵树分别为\(T_{0\sim m}\),一开始只有\(T_0\)有一个点,编号为0. 对于每棵树\(T_i\)由T_{a_i}\(的第\)c_i\(个点与\)T_{b_i}\( ...
- Linux:vscode扩展无法下载,报错:Error while fetching extensions : XHR failed
在Linux系统上下载安装好vscode以后,发现扩展里面无法下载安装,报错:Error while fetching extensions : XHR failed 解决办法:修改 hosts 文件 ...
- 树模型-label boosting-GBDT
GBDT GBDT是boosting系列算法的代表之一,其核心是 梯度+提升+决策树. GBDT回归问题 通俗的理解: 先来个通俗理解:假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时 ...
- sql 语句系列(删库跑路系列)[八百章之第七章]
前言 最开心的章节,没有之一. 删除违反参照完整性的记录 EMP 是员工表,DEPT 是部门表 DEPTNO是部门编号 delete from EMP where not exists ( selec ...
- python抽帧及生成高质量的GIF图
python抽帧及生成高质量的GIF图 对视频进行抽帧只需要两个模块即可: opencv-python (cv2) opencv-contrib-python 我们都知道视频有分辨率,即视频的宽度与高 ...
- 这些Git事故灾难, 你经历过几个?
前言 关于Git, 相信大家最常用的就是pull和push. 但随着协作规模的提升, 遇到的问题也会越来越多. 本篇文章并不科普一些命令的详细用法, 更多的是分享在工作中遇到的Git场景问题以及踩过的 ...