BZOJ3505 [Cqoi2014]数三角形
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
Description
给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个。下图为4x4的网格上的一个三角形。
注意三角形的三点不能共线。
Input
输入一行,包含两个空格分隔的正整数m和n。
Output
输出一个正整数,为所求三角形数量。
Sample Input
Sample Output
数据范围
1<=m,n<=1000
正解:组合数学
解题报告:
这道题高一NOIP停课的时候考过原题...
正难则反,无法直接求三角形的数量就可以考虑所有的方案减去不构成三角形的情况。
显然只选出三个点的方案数为C((n+1)*(m+1),3),减去横着的:(m+1)*C(n+1,3),和竖着的:(n+1)*C(m+1,3)再减掉斜着的。斜着的计算起来比较复杂,考虑如果我只讨论经过左下角那个点(不妨设为原点)的情况,那么在我枚举了另一个端点(i,j)之后就可以唯一的确定一条直线,而这条直线上的点数可以用gcd(i,j)+1来表示,这个应该还比较好理解,就是得到一个直线解析式或者用相似来理解也行。只有在点数大于2的时候才会有贡献,且我们考虑这条直线可以平移,并且可以关于y轴对称后再平移,所以贡献就很明了了。
即ans=$C ^ {3}_{(n+1)*(m+1)}$ $ - (m+1)* C ^ {3}_{n+1} -$ $(n+1)* C ^ {3}_{m+1}-$斜着的方案数
斜着的方案数求法看代码吧......
ps:我为了追求速度,预处理了两两的gcd,并且把组合数递推换成了直接暴力算。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
using namespace std;
typedef long long LL;
const int MAXN = ;
int n,m,G[MAXN][MAXN];
LL ans;
inline int gcd(int x,int y){ if(y==) return x; return gcd(y,x%y); }
inline int getint(){
int w=,q=; char c=getchar(); while((c<''||c>'') && c!='-') c=getchar();
if(c=='-') q=,c=getchar(); while (c>=''&&c<='') w=w*+c-'',c=getchar(); return q?-w:w;
} inline void work(){
n=getint(); m=getint(); n++; m++; if(n<m) swap(n,m); LL lim=n*m; int now;
ans=lim*(lim-)*(lim-)/; ans-=(LL)m*n*(n-)*(n-)/; ans-=(LL)n*m*(m-)*(m-)/;
for(int i=;i<n;i++) for(int j=i;j<n;j++) G[i][j]=gcd(i,j),G[j][i]=G[i][j];
for(int i=;i<n;i++)
for(int j=;j<m;j++) {
now=G[i][j]; now++;
if(now>) ans-=*(now-)*(n-i)*(m-j);
}
printf("%lld",ans);
} int main()
{
work();
return ;
}
BZOJ3505 [Cqoi2014]数三角形的更多相关文章
- [bzoj3505][CQOI2014]数三角形_组合数学
数三角形 bzoj-3505 CQOI-2014 题目大意:给你一个n*m的网格图,问你从中选取三个点,能构成三角形的个数. 注释:$1\le n,m\le 1000$. 想法:本来是想着等中考完了之 ...
- BZOJ3505 CQOI2014数三角形(组合数学)
显然可以用总方案数减掉三点共线的情况.对于三点共线,一个暴力的做法是枚举起点终点,其间整点数量即为横纵坐标差的gcd-1.这样显然会T,注意到起点终点所形成的线段在哪个位置是没有区别的,于是枚举线段算 ...
- [bzoj3505 Cqoi2014] 数三角形 (容斥+数学)
传送门 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正 ...
- bzoj3505: [Cqoi2014]数三角形 [数论][gcd]
Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和 ...
- 【排列组合】bzoj3505 [Cqoi2014]数三角形
http://blog.csdn.net/zhb1997/article/details/38474795 #include<cstdio> #include<algorithm&g ...
- 2018.09.09 bzoj3505: [Cqoi2014]数三角形(容斥原理+简单计数)
传送门 正难则反. 可以直接把问题转化成求出三点共线的情况数量. 如果同在一排或一列显然可以直接算,关键是如何求出斜着的. 我们知道,对于一个整点矩形. 如果长为x,宽为y,那么这个矩形任意一条对角线 ...
- bzoj3505 [Cqoi2014]数三角形——组合数+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3505 好题啊好题...好像还曾经出现在什么智力测试卷中来着...当时不会现在还是无法自己推出 ...
- 【BZOJ3505】[Cqoi2014]数三角形 组合数
[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...
- 【bzoj3505】[Cqoi2014]数三角形
[bzoj3505][Cqoi2014]数三角形 2014年5月15日3,5230 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4×4的网格上的一个三角 ...
随机推荐
- windows server2012 R2 本地策略编辑
进入本地策略编辑器: 1.win + R 2.输入命令行:gpedit.msc 密码期限设置: 1.windows设置 2.安全设置 3.账户策略 4.密码策略 5.密码最长使用期限 赋值 0 交互登 ...
- Android 四大组件之再论service
service常见的有2种方式,本地service以及remote service. 这2种的生命周期,同activity的通信方式等,都不相同. 关于这2种service如何使用,这里不做介绍,只是 ...
- 压缩Sqlite数据文件大小,解决数据删除后占用空间不变的问题
最近有一网站使用Sqlite数据库作为数据临时性的缓存,对多片区进行划分 Sqlite数据库文件,每天大概新增近1万的数据量,起初效率有明显的提高,但历经一个多月后数据库文件从几K也上升到了近160M ...
- SQL Server删除distribution数据库
在数据库服务器删除复制(发布订阅)后,如何删除掉数据库distribution呢?如果你通过SSMS工具去删除数据库distribution,你会发现根本没有删除选项. 下面介绍一下删除distrib ...
- Tokudb 参数优化
tokudb_row_format tokudb_fast: 使用quicklz 库的压缩模式.(推荐)tokudb_small: 使用 lzma 库的压缩模式.tokudb_zlib: 使用 zli ...
- python线程池实现
python 的线程池主要有threadpool,不过它并不是内置的库,每次使用都需要安装,而且使用起来也不是那么好用,所以自己写了一个线程池实现,每次需要使用直接import即可.其中还可以根据传入 ...
- 编译安装zabbix 3.0及分开部署配置详解
实验系统:CentOS 6.6_x86_64 实验前提:提前准备好编译环境,防火墙和selinux都关闭 实验说明:本实验共有4台主机,IP及角色分配如拓扑 下载地址:试验中用到mariadb软件的下 ...
- 谈谈Java中的ThreadLocal
什么是ThreadLocal ThreadLocal一般称为线程本地变量,它是一种特殊的线程绑定机制,将变量与线程绑定在一起,为每一个线程维护一个独立的变量副本.通过ThreadLocal可以将对象的 ...
- 解决win10卡顿现象
前两天打开了windows defender,想着既然是window自带的防护工具,应该效果不错.经过测试之后 ,发现这个要占用很大内存,得不偿失.如果想要保证系统安全,甚至腾讯电脑管家做的都比这个w ...
- 杂项之pymysql连接池
杂项之pymysql连接池 本节内容 本文的诞生 连接池及单例模式 多线程提升 协程提升 后记 1.本文的诞生 由于前几天接触了pymysql,在测试数据过程中,使用普通的pymysql插入100W条 ...