理解JVM内存分配策略

三大原则+担保机制

JVM分配内存机制有三大原则和担保机制

具体如下所示:

  • 优先分配到eden区
  • 大对象,直接进入到老年代
  • 长期存活的对象分配到老年代
  • 空间分配担保

对象优先在Eden上分配

如何验证对象优先在Eden上分配呢,我们进行如下实验。

打印内存分配信息

首先代码如下所示:

public class A {
public static void main(String[] args) {
byte[] b1 = new byte[4*1024*1024];
}
}

代码很简单,就是创建一个Byte数组,大小为4mb。

然后我们在运行的时候加上虚拟机参数来打印垃圾回收的信息。

-verbose:gc -XX:+PrintGCDetails

在我们运行后,结果如下所示。

Heap

PSYoungGen total 37888K, used 6718K [0x00000000d6000000, 0x00000000d8a00000, 0x0000000100000000)

eden space 32768K, 20% used [0x00000000d6000000,0x00000000d668f810,0x00000000d8000000)

from space 5120K, 0% used [0x00000000d8500000,0x00000000d8500000,0x00000000d8a00000)

to space 5120K, 0% used [0x00000000d8000000,0x00000000d8000000,0x00000000d8500000)

ParOldGen total 86016K, used 0K [0x0000000082000000, 0x0000000087400000, 0x00000000d6000000)

object space 86016K, 0% used [0x0000000082000000,0x0000000082000000,0x0000000087400000)

Metaspace used 2638K, capacity 4486K, committed 4864K, reserved 1056768K

class space used 281K, capacity 386K, committed 512K, reserved 1048576K

手动指定收集器

我们可以看在新生代采用的是Parallel Scavenge收集器

其实我们可以指定虚拟机参数来选择垃圾收集器。

比方说如下参数:

-verbose:gc -XX:+PrintGCDetails -XX:+UseSerialGC

运行结果如下:

Heap

def new generation total 38720K, used 6850K [0x0000000082000000, 0x0000000084a00000, 0x00000000ac000000)

eden space 34432K, 19% used [0x0000000082000000, 0x00000000826b0be8, 0x00000000841a0000)

from space 4288K, 0% used [0x00000000841a0000, 0x00000000841a0000, 0x00000000845d0000)

to space 4288K, 0% used [0x00000000845d0000, 0x00000000845d0000, 0x0000000084a00000)

tenured generation total 86016K, used 0K [0x00000000ac000000, 0x00000000b1400000, 0x0000000100000000)

the space 86016K, 0% used [0x00000000ac000000, 0x00000000ac000000, 0x00000000ac000200, 0x00000000b1400000)

Metaspace used 2637K, capacity 4486K, committed 4864K, reserved 1056768K

class space used 281K, capacity 386K, committed 512K, reserved 1048576K

其实JDK默认的不是Parallel收集器,但是JDK会依照各种环境来调整采用的垃圾收集器。

查看环境的代码如下:

java -version



因此JDK根据server的环境,采用了Paralled收集器。

而Serial收集器主要用在客户端的。

eden分配的验证

我们看到现在eden区域为34432K,使用了19%,那我们来扩大10倍是否eden就放不下了呢?

我们来验证一下。

public class A {
public static void main(String[] args) {
byte[] b1 = new byte[40*1024*1024];
}
}

运行结果如下:

Heap

def new generation total 38720K, used 2754K [0x0000000082000000, 0x0000000084a00000, 0x00000000ac000000)

eden space 34432K, 8% used [0x0000000082000000, 0x00000000822b0bd8, 0x00000000841a0000)

from space 4288K, 0% used [0x00000000841a0000, 0x00000000841a0000, 0x00000000845d0000)

to space 4288K, 0% used [0x00000000845d0000, 0x00000000845d0000, 0x0000000084a00000)

tenured generation total 86016K, used 40960K [0x00000000ac000000, 0x00000000b1400000, 0x0000000100000000)

the space 86016K, 47% used [0x00000000ac000000, 0x00000000ae800010, 0x00000000ae800200, 0x00000000b1400000)

Metaspace used 2637K, capacity 4486K, committed 4864K, reserved 1056768K

class space used 281K, capacity 386K, committed 512K, reserved 1048576K

显然,我们还是正常运行了,但是eden区域没有增加,老年代区域却增加了,符合大对象直接分配到老年代的特征。。

所以我们适当的缩小每次分配的大小。

我们在此限制下eden区域的大小

参数如下:

-verbose:gc -XX:+PrintGCDetails -XX:+UseSerialGC -Xms20M -Xmx20M -Xmn10M -XX:SurvivorRatio=8

这里我们限制内存大小为20M

Eden大小为8M

然后我们运行我们的代码:

代码如下所示:

public class A {
public static void main(String[] args) {
byte[] b1 = new byte[2*1024*1024];
byte[] b2 = new byte[2*1024*1024];
byte[] b3 = new byte[2*1024*1024];
byte[] b4 = new byte[4*1024*1024];
System.gc();
}
}

运行结果如下:

[GC (Allocation Failure) [DefNew: 7129K->520K(9216K), 0.0053010 secs] 7129K->6664K(19456K), 0.0053739 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]

[Full GC (System.gc()) [Tenured: 6144K->6144K(10240K), 0.0459449 secs] 10920K->10759K(19456K), [Metaspace: 2632K->2632K(1056768K)], 0.0496885 secs] [Times: user=0.00 sys=0.00, real=0.04 secs]

Heap

def new generation total 9216K, used 4779K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)

eden space 8192K, 58% used [0x00000000fec00000, 0x00000000ff0aad38, 0x00000000ff400000)

from space 1024K, 0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)

to space 1024K, 0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)

tenured generation total 10240K, used 6144K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)

the space 10240K, 60% used [0x00000000ff600000, 0x00000000ffc00030, 0x00000000ffc00200, 0x0000000100000000)

Metaspace used 2638K, capacity 4486K, committed 4864K, reserved 1056768K

class space used 281K, capacity 386K, committed 512K, reserved 1048576K

我们可以发现在eden区域为8192K 约为8M

也就是我们的b4的大小

而原先的b1,b2,b3为6M,被分配到了tenured generation。

原先的Eden区域如下所示,在分配完,b1,b2,b3后如下所示。



这时候我们发现已经无法继续分了。

而查看日志的时候,我们发生了俩次GC。

[GC (Allocation Failure) [DefNew: 7129K->520K(9216K), 0.0053010 secs] 7129K->6664K(19456K), 0.0053739 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]

[Full GC (System.gc()) [Tenured: 6144K->6144K(10240K), 0.0459449 secs] 10920K->10759K(19456K), [Metaspace: 2632K->2632K(1056768K)], 0.0496885 secs] [Times: user=0.00 sys=0.00, real=0.04 secs]

而在

[DefNew: 7129K->520K(9216K), 0.0053010 secs] 7129K->6664K(19456K), 0.0053739 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]

中我们会看到,刚分配的对象并没有被回收。

上面的GC是针对新生代的。

而下面的FullGC是针对老年代的。

如果我们这时候要再分配4m的内存,虚拟机默认将原先的eden区域放到可放的地方,也就是在老年代这里

因此会发生我们这种情况。

这就是整个过程。验证了对象有现在Eden区域回收


大对象直接进入到老年代

指定大对象的参数。

-XX:PretenureSizeThreshold

测试代码:如下

-verbose:gc -XX:+PrintGCDetails -XX:+UseSerialGC -Xms20M -Xmx20M -Xmn10M -XX:SurvivorRatio=8
public class A {
private static int M = 1024*1024;
public static void main(String[] args) {
byte[] b1 = new byte[8*M];
}
}

运行结果如下:

Heap

def new generation total 9216K, used 1149K [0x00000000fec00000, 0x00000000ff600000, 0x00000000ff600000)

eden space 8192K, 14% used [0x00000000fec00000, 0x00000000fed1f718, 0x00000000ff400000)

from space 1024K, 0% used [0x00000000ff400000, 0x00000000ff400000, 0x00000000ff500000)

to space 1024K, 0% used [0x00000000ff500000, 0x00000000ff500000, 0x00000000ff600000)

tenured generation total 10240K, used 8192K [0x00000000ff600000, 0x0000000100000000, 0x0000000100000000)

the space 10240K, 80% used [0x00000000ff600000, 0x00000000ffe00010, 0x00000000ffe00200, 0x0000000100000000)

Metaspace used 2637K, capacity 4486K, committed 4864K, reserved 1056768K

class space used 281K, capacity 386K, committed 512K, reserved 1048576K

我们可以看到,结果数直接把8M扔到了老年代里面了。

而我们修改成7M的时候

被发现7M全部扔到了eden里面。

如果我们制定了参数后,会发现结果变了。

参数如下所示:

-verbose:gc -XX:+PrintGCDetails -XX:+UseSerialGC -Xms20M -Xmx20M -Xmn10M -XX:SurvivorRatio=8 -XX:PretenureSizeThreshold=6M

运行结果如下:

我们会发现7M进到了老年代。

长期存活对象进入老年代


参数如下:

-XX:MaxTenuringThreshold

每次进行回收的时候,如果没被回收,那对象的年龄+1

如果对象年龄到达阈值,就会进入老年代。

具体测试和上面的Max一样。就不占篇幅了。


空间分配担保

参数如下:

-XX:+HandlePromotionFailure

步骤如下:

  • 首先衡量有没有这个能力,然后才能进行分配。
  • 如果有这个能力放入,那么这个参数是‘+’号证明开启了内存担保,否则是‘-’号就是没开启。

总结:

JVM内存分配策略不是特别复杂,只要一步一步跟着虚拟机走,那么就可以去理解JVM内存分配的机制。

高强度学习训练第七天总结:JVM分配内存机制的更多相关文章

  1. 高强度学习训练第四天总结:JVM+Redis

    JVM 复习了JVM堆内存的几个模块. 复习了JVM的几个控制工具. 复习了JVM发展历史 Redis 复习了Redis的事务控制.

  2. 高强度学习训练第十三天总结:使用Netty实现一个http服务器

    Netty入门 Netty的重要性不言而喻.那么今天就来学习一下Netty. 整个项目基于Gradle搭建. Build如下所示: plugins { id 'java' } group 'cn.ba ...

  3. 高强度学习训练第十天总结:Class文件

    今天这Class文件看的我一脸懵圈.有种当初学PE时候的感觉了. 类文件结构 如果计算机的CPU指令集只有X86一种,操作系统也只有windows,那也许Java语言就不会出现.Java在诞生之初就提 ...

  4. 高强度学习训练第九天总结:5道剑指offer的题目

    实在不想看JVM了.刷几道剑指Offer的题,今天就水一水吧,脑子迷糊. 1.二维数组中的查找 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增 ...

  5. 高强度学习训练第八天总结:MySQL的一些优化

    为什么要做MYSQL优化 系统的吞吐量瓶颈往往出现在数据库的访问速度上 随着应用程序的运行,数据库中的数据会越来越多,处理时间会相应变慢. 数据是存放在磁盘上的,读写速度无法和内存相比 如何优化 设计 ...

  6. 高强度学习训练第六天总结:Redis主从关系总结

    Redis主从复制机制 1.读写分离的好处 性能优化:主服务器专注于写操作,可以更适合写入数据的模式工作:同样,从服务器专注于读操作,可以用更适合读取数据的模式工作. 强化数据安全,避免单点故障:由于 ...

  7. 高强度学习训练第十六天总结: Spring框架中的设计模式

    仔细想了想..没必要重复造轮子. 每天复习啥了就直接CTRL CV了 https://gitee.com/SnailClimb/JavaGuide/blob/master/docs/system-de ...

  8. 高强度学习训练第十四天总结:HashMap

    HashMap 简介 HashMap 主要用来存放键值对,它基于哈希表的Map接口实现,是常用的Java集合之一. JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap ...

  9. 高强度学习训练第十二天总结:Java hashCode和equals的关系

    今天要收拾东西.草草的总结下.. 1.如果两个对象相等,则hashcode一定也是相同的 2.两个对象相等,对两个对象分别调用equals方法都返回true 3.两个对象有相同的hashcode值,它 ...

  10. 高强度学习训练第十一天总结:Class文件结构(二)

    常量池 可以理解为Class文件之中的资源仓库,他是Class文件结构中与其他项目关联最多的数据类型,也是占用Class文件空间最大的数据项目之一 访问标志 在常量池结束后,紧接着的俩个字节代表访问标 ...

随机推荐

  1. Java工具库——Hutool的常用方法

    Hutool-All(或简称Hutool)是一个功能强大的Java编程工具库,旨在简化Java应用程序的开发. 它提供了大量的工具类和方法,涵盖了各种常见任务,包括字符串处理.日期时间操作.文件操作. ...

  2. SpringBoot整合Redis,并处理序列化反序列化问题

    1.添加Redis依赖 在项目的pom.xml文件中添加Redis的依赖项.例如,可以使用spring-boot-starter-data-redis依赖项来引入Redis的支持. <depen ...

  3. 【Java】JDBC Part5 DataSource 连接池操作

    JDBC Part5 DataSource 连接池操作 - javax.sql.DataSource 接口,通常由服务器实现 - DBCP Tomcat自带相对C3P0速度较快,但存在BUG,已经不更 ...

  4. 位段 -- 内存布局详解C语言

    目录 位段的介绍 位段使用示例: 位段的内存分配 Example 内存分配解析: ## 位段 位段的介绍 位段(二进制位):就是按位存储 位段(bit-field)是C语言中的一种特殊数据类型,它允许 ...

  5. 国内的开源AI模型共享网站(AI模型的GitHub)—— mindscope —— 使用git lfs方式下载模型文件

    参考前文: 国内的开源AI模型共享网站(AI模型的GitHub)-- mindscope -- 对标外网的"huggingface",mindscope好用吗? 使用git lfs ...

  6. MPI经典课程视频 —— 中国科学技术大学-并行计算(国家级精品课) —— 陈国良院士的06年课程

    课程视频地址: https://www.bilibili.com/video/BV1U7411N78e

  7. HP笔记本电脑——暗夜精灵2pro继电池鼓包后出现无法充电的问题,最后电量显示:0%可用(电源已接通,未充电)

    问题如题,最近使用暗夜精灵2pro笔记本(自己17年5月1节日购买)使用了四年,使用了第二年的时候出现电池鼓包问题于是自己花了不到200元在某宝上购入电池进行替换同时更新bios,正常使用到今年8月2 ...

  8. 【分享】java精品实战教程

    1.背景 大家好,我是一名地地道道的码农,平时在工作喜欢写博客, 一方面可以梳理技术点提升自己的技术,在遇到同样的问题时可以快速解决; 另一方面也想贡献自己的微博力量帮助其他遇到同样问题的人 后来觉得 ...

  9. 运用Npcap库实现SYN半开放扫描

    Npcap 是一款高性能的网络捕获和数据包分析库,作为 Nmap 项目的一部分,Npcap 可用于捕获.发送和分析网络数据包.本章将介绍如何使用 Npcap 库来实现半开放扫描功能.TCP SYN 半 ...

  10. 从0实现基于Linux socket聊天室-多线程服务器一个很隐晦的错误-2

    根据 <0 基于socket和pthread实现多线程服务器模型>所述,server创建子线程的时候用的是以下代码: pconnsocke = (int *) malloc(sizeof( ...