技术背景

在前面一篇文章中,我们介绍了一维离散傅里叶变换和快速傅里叶变换的基本原理和简单的代码实现。本文补充一个多维傅里叶变换的场景,以及简单的Python实现。

二维傅里叶变换

首先回顾一下上一篇文章中介绍的一维傅里叶变换与逆傅里叶变换的形式:

\[y_k=\sum_{n=0}^{N-1}x_ne^{-j\frac{2\pi nk}{N}},0\leq k\leq N-1\\
x_n=\frac{1}{N}\sum_{k=0}^{N-1}y_ke^{j\frac{2\pi nk}{N}},0\leq n\leq N-1
\]

那么首先我们通过前面一篇文章中的简单DFT实现来理解一下一维傅里叶变换的物理图像:

import numpy as np

def dft(x):
y = np.zeros_like(x, dtype=np.complex64)
N = x.shape[0]
for k in range(N):
y[k] = np.sum(x * np.exp(-1j*2*np.pi*k*np.arange(N)/N))
return y

我们先不讨论时域和频域的概念,这里只有输入x和输出y,那么每一点的y的数据,都是通过一系列的参数矢量与x矢量的内积。换句话说,x上的每一个数据点都对y的每一个数据点有贡献,这个贡献的大小通过傅里叶变换的参数来给定:

那么高维傅里叶变换,其实就是按顺序在每个维度上做内积:

对应的代数形式为:

\[y_{k_1,k_2}=\sum_{n_2=0}^{D-1}e^{-j\frac{2\pi n_2k_2}{D}}\sum_{n_1=0}^{N-1}x_{n_1,n_2}e^{-j\frac{2\pi n_1k_1}{N}},0\leq k_1,k_2\leq N-1\\
x_{n_1,n_2}=\frac{1}{D}\sum_{k_2=0}^{D-1}e^{j\frac{2\pi n_2k_2}{D}}\frac{1}{N}\sum_{k_1=0}^{N-1}y_{k_1,k_2}e^{j\frac{2\pi n_1k_1}{N}},0\leq n_1,n_2\leq N-1
\]

至于更高维度的傅里叶变换,就是继续增加求和的维度。也有一种常见的写法是采用归一化的矢量内积形式:

\[y_{\vec{k}}=\sum_{\vec{n}}e^{-2j\pi\vec{k}\cdot\vec{n}}x_{\vec{n}}
\]

至于FFT的形式,只是对其中的特定维度进行分解,这里不做更多分析,可以直接看一下多维DFT的一个简单实现。

Python代码实现

这里使用Python实现一个最简单的二维傅里叶变换和逆傅里叶变换,没有经过任何的优化:

import numpy as np

def dftn(x):
y = np.zeros_like(x, dtype=np.complex64)
N = x.shape[0]
D = x.shape[1]
for k1 in range(N):
for k2 in range(D):
for n1 in range(N):
for n2 in range(D):
y[k1][k2] += np.exp(-2j*np.pi*(k2*n2)/D)* np.exp(-2j*np.pi*(k1*n1)/N) * x[n1][n2]
return y def idftn(y):
x = np.zeros_like(y, dtype=np.complex64)
N = y.shape[0]
D = y.shape[1]
for n1 in range(N):
for n2 in range(D):
for k1 in range(N):
for k2 in range(D):
x[n1][n2] += np.exp(2j*np.pi*(k2*n2)/D) * np.exp(2j*np.pi*(k1*n1)/N) * y[k1][k2] / N / D
return x N = 16
x = np.random.random((N, 3)).astype(np.float32)
y0 = dftn(x)
y1 = np.fft.fft2(x)
x0 = idftn(y1)
x1 = np.fft.ifft2(y0)
print (np.allclose(y0, y1))
print (np.allclose(x0, x1))
# True
# True

经过和numpy中实现方式的对比,两边结果一致。

总结概要

继前一篇文章中的一维傅里叶变换,本文介绍了多维傅里叶变换的物理图像和基本原理,并附带了Python简单实现。并将Python的计算结果与Numpy中已经实现的二维傅里叶变换的结果进行对比。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/fftn.html

作者ID:DechinPhy

更多原著文章:https://www.cnblogs.com/dechinphy/

请博主喝咖啡:https://www.cnblogs.com/dechinphy/gallery/image/379634.html

Python实现多维傅里叶变换的更多相关文章

  1. Day1 老男孩python自动化运维课程学习笔记

    2017年1月7日老男孩python自动化运维课程正式开课 第一天学习内容: 上午 1.python语言的基本介绍 python语言是一门解释型的语言,与1989年的圣诞节期间,吉多·范罗苏姆为了在阿 ...

  2. python自动化运维学习第一天--day1

    学习python自动化运维第一天自己总结的作业 所使用到知识:json模块,用于数据转化sys.exit 用于中断循环退出程序字符串格式化.format字典.文件打开读写with open(file, ...

  3. 有关python下二维码识别用法及识别率对比分析

    最近项目中用到二维码图片识别,在python下二维码识别,目前主要有三个模块:zbar .zbarlight.zxing. 1.三个模块的用法: #-*-coding=utf-8-*- import ...

  4. 从Scratch到Python——Python生成二维码

    # Python利用pyqrcode模块生成二维码 import pyqrcode import sys number = pyqrcode.create('从Scratch到Python--Pyth ...

  5. python常用运维脚本实例

    转载  file是一个类,使用file('file_name', 'r+')这种方式打开文件,返回一个file对象,以写模式打开文件不存在则会被创建.但是更推荐使用内置函数open()来打开一个文件 ...

  6. 转:python常用运维脚本实例

    python常用运维脚本实例 转载  file是一个类,使用file('file_name', 'r+')这种方式打开文件,返回一个file对象,以写模式打开文件不存在则会被创建.但是更推荐使用内置函 ...

  7. python常用运维脚本实例【转】

    file是一个类,使用file('file_name', 'r+')这种方式打开文件,返回一个file对象,以写模式打开文件不存在则会被创建.但是更推荐使用内置函数open()来打开一个文件 . 首先 ...

  8. 【目录】Python自动化运维

    目录:Python自动化运维笔记 Python自动化运维 - day2 - 数据类型 Python自动化运维 - day3 - 函数part1 Python自动化运维 - day4 - 函数Part2 ...

  9. python自动化运维篇

    1-1 Python运维-课程简介及基础 1-2 Python运维-自动化运维脚本编写 2-1 Python自动化运维-Ansible教程-Ansible介绍 2-2 Python自动化运维-Ansi ...

  10. 用python生成二维码

    Python生成二维码,可以使用qrcode模块, github地址 我是搬运工 首先安装, 因为打算生成好再展示出来,所以用到Pillow模块 pip install qrcode pip inst ...

随机推荐

  1. Odoo 自定义form表单按钮点击事件处理程序

    实践环境 Odoo 14.0-20221212 (Community Edition) 代码实现 方案1 通过研究发现,点击odoo form表单按钮时,会调用odoo14\odoo\addons\w ...

  2. P10244 String Minimization 题解

    P10244 String Minimization 题意 给你四个长度为 \(n\) 的字符串,分别是 \(abcd\). 你可以选择一个 \(i\) 然后交换 \(a[i]\) 和 \(c[i]\ ...

  3. rtmp流程解析

    如果rtmp推流地址:rtmp://服务器地址:rtmp端口/路径/名称对应的websocket地址:ws://服务器地址:websocket端口/路径/名称.flv举例:live作为路径,s作为流名 ...

  4. Java代码实现七夕魔方照片墙

    创建一个七夕魔方照片墙是一个相对复杂的任务,涉及到前端展示和后端数据处理.在这里,我会提供一个简化的Java后端示例,用于生成一个模拟的"照片墙"数据模型,并给出一个基本的前端HT ...

  5. linux性能资源分析工具

    linux性能资源分析工具 1,top 2,ps 3,uptime 4,mpstat 5,pidstat 6,vmstat 7,iostat 8,netstat 9,lsof 10,sar / nmo ...

  6. Postman汉化成中文版

    postman安装默认是英文版,为使用方便使用汉化包转成中文版 1.查看本地安装的postman版本:Settings->About 2.根据postman的版本下载对应的汉化包,汉化包网址 3 ...

  7. 【Java】Applet开发

    一.Applet开发环境准备 IDEA在2018版本默认提供了Applet启动配置 创建一个Applet应用配置: 在IDEA2019版本之后,这个应用配置选项被移除了,改为Java Applet S ...

  8. 【Git】Gitlab仓库访问拒绝,SSL校验影响

    更新代码失败,不可访问[XX]仓库 fatal: unable to access 'https://gitcyx.yycsy.com/dmscloud/dcs/dcs-vue-coordinate. ...

  9. 【C】Re09 结构体

    一.结构体 Struct 创建和基本使用 #include <stdio.h> #include <stdlib.h> #include <string.h> // ...

  10. 【Shiro】01 概述 & 快速上手

    什么是Shiro? Apache Shiro 是Java的一个权限安全框架 一些功能:认证.授权.加密.会话管理.与Web 集成.缓存等   Shiro官网地址:[ 点击访问 ] http://shi ...