Vulkan学习苦旅06:创建渲染通道(VkRenderPass)
对于一个复杂的图形应用程序,需要多个过程的配合,以生成图像的各个部分。通常,各个过程间存在着依赖关系,例如某个过程生成的图像(输出)被另一个过程使用(作为此过程的输入)。在Vulkan中,每个过程被称为一个子通道(subpass), 所有的子通道构成了一个渲染通道(VkRenderPass).
在这篇博客中,我们将定义函数createRenderPass用于创建一个渲染通道,且渲染通道中仅包含一个子通道。
1. 子通道的信息
在创建渲染通道前,我们需要每个子通道的信息,子通道的信息通过结构体VkSubpassDescription描述,此结构体的定义如下:
typedef struct VkSubpassDescription {
    VkSubpassDescriptionFlags flags;
    VkPipelineBindPoint pipelineBindPoint;
    uint32_t inputAttachmentCount;
    const VkAttachmentReference* pInputAttachments;
    uint32_t colorAttachmentCount;
    const VkAttachmentReference* pColorAttachments;
    const VkAttachmentReference* pResolveAttachments;
    const VkAttachmentReference* pDepthStencilAttachment;
    uint32_t preserveAttachmentCount;
    const uint32_t* pPreserveAttachments;
} VkSubpassDescription;什么是附件(Attachment)?
在上面的结构体中,多次出现attachment一词,这个单词的意思是附件。什么是附件呢?顾名思义,附件就是附加的资源。在渲染一副图像时,我们还需要一些额外的资源,例如深度缓冲、模板缓冲等等。(这些之后还会详细介绍)
打个可能不是太恰当的比方:在考试时,我们的任务是在试卷上(渲染的目标)作答,而打草稿用的草稿纸就起到了附件的作用。
此结构体中,
pipelineBindPoint: 目前Vulkan仅支持图形渲染通道,因此只有一个取值VK_PIPELINE_BIND_POINT_GRAPHICS;
inputAttachmentCount, pInputAttachments: 输入附件,子通道从输入附件中读取数据;
colorAttachmentCount, pColorAttachments: 颜色附件,子通道向此附件写入输出;
pResolveAttachments: 解析附件,暂时不用管它;
pDepthStencilAttachment: 深度-模板缓冲。在图形学API中,深度缓冲与模板缓冲紧密联系在一起,一个子通道只需要一个深度缓冲和一个模板缓冲(所以此成员名没有使用复数形式,当你知道它们是做什么的,自然就明白了为什么只需要一个即可)。画一个三角形不需要设置它们,因此暂时不用管它;
preserveAttachmentCount, pPreserveAttachments: 暂时不用管它们。
目前,我们只在此结构体的颜色附件填充有效的信息(即colorAttachmentCount和pColorAttachments),但在此之前,还需要搞清楚pColorAttachments指向的结构体VkAttachmentReferences是什么,这个结构体的定义如下:
typedef struct VkAttachmentReference {
    uint32_t attachment;
    VkImageLayout layout;
} VkAttachmentReference;其中,attachment是附件的索引,是什么的索引呢?这个我们待会再说,暂时将其甚至为0; layout表示子通道中附件的图像布局,这里暂时设置为VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL. 即:
VkAttachmentReference colorAttachmentReference{
	0,  // .attachment, 上述attachment description的索引
	VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,  // .layout
};之后,我们就可以填充描述子通道的结构体:
VkSubpassDescription subpassDescription{
	0,  // .flags
	VK_PIPELINE_BIND_POINT_GRAPHICS,  // .pipelineBindPoint
	0,  // .inputAttachmentCount
	nullptr,  // .pInputAttachments
	1,  // .colorAttachmentCount
	&colorAttachmentReference,  // .pColorAttachments
	nullptr,  // .pResolveAttachments
	nullptr,  // .pDepthStencilAttachment
	0,  // .preserveAttachmentCount
	nullptr,  // .pPreserveAttachments
};可以看到,除了一个颜色附件外,基本上没有填入什么有效的信息。
2. 创建渲染通道
创建渲染通道的结构体为VkRenderPassCreateInfo, 其定义如下:
typedef struct VkRenderPassCreateInfo {
    VkStructureType sType;
    const void* pNext;
    VkRenderPassCreateFlags flags;
    uint32_t attachmentCount;
    const VkAttachmentDescription* pAttachments;
    uint32_t subpassCount;
    const VkSubpassDescription* pSubpasses;
    uint32_t dependencyCount;
    const VkSubpassDependency* pDependencies;
} VkRenderPassCreateInfo;可以看到,此结构体的关键在于传递三个数组:
attachmentCount, pAttachments: 数组VkAttachmentDescription[];
subpassCount, pSubpasses: 数组VkSubpassDescription[]. 此数组正是上一节我们定义的子通道信息数组;
dependencyCount, pDependencies: 数组VkSubpassDependency[].
2.1. 对附件的操作
VkAttachmentDescription[]数组描述了对附件的操作,上一节中提到的索引正是用于索引这个数组。由于我们只定义了一个附件(颜色附件),所以只要设置如何操作此附件即可。结构体VkAttachmentDescription的定义如下:
typedef struct VkAttachmentDescription {
    VkAttachmentDescriptionFlags flags;
    VkFormat format;
    VkSampleCountFlagBits samples;
    VkAttachmentLoadOp loadOp;
    VkAttachmentStoreOp storeOp;
    VkAttachmentLoadOp stencilLoadOp;
    VkAttachmentStoreOp stencilStoreOp;
    VkImageLayout initialLayout;
    VkImageLayout finalLayout;
} VkAttachmentDescription;其中,
format:用于指定附件的格式,之前在创建交换链时我们指定了格式,稍后我们将修改代码,将格式作为VulkanApp类的一个成员;
samples: 如果不使用多重采样,就可以设置为VK_SAMPLE_COUNT_1_BIT;
loadOp, stencilLoadOp: 在渲染通道开始时如何处理附件,如果附件是深度-模板缓冲,stencilLoadOp会指定处理模板缓冲的方式。可选的值有:VK_ATTACHMENT_LOAD_OP_LOAD(附件中已经保存了有效数据,继续对其操作)、VK_ATTACHMENT_LOAD_OP_CLEAR(清空附件的内容)、VK_ATTACHMENT_LOAD_OP_DONT_CARE(不关心附件里有什么);
storeOp, stencilStoreOp: 在渲染通道结束时如何处理附件,如果附件是深度-模板缓冲,stencilStoreOp会指定处理模板缓冲的方式。可选的值有:VK_ATTACHMENT_STORE_OP_STORE(将附件写入内存)、VK_ATTACHMENT_STORE_OP_DONT_CARE(不需要附件的内容);
initialLayout, finalLayout: 渲染通道开始与结束时图像的布局,暂时不用管它们。
首先,在VulkanApp类中添加成员表示图像的格式:
VkFormat mSwapChainImageFormat;  // 交换链的图像格式之后,将交换链中选择的图像格式保存到上述成员中:
/*  获取物理设备对图像格式的支持  */
uint32_t formatCount = 0;
vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, mSurface, &formatCount, nullptr);
vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, mSurface, &formatCount, surfaceFormats.data());
mSwapChainImageFormat = surfaceFormats[0].format;  // 函数createSwapChain中,选择的图像格式这样,我们就可以填充结构体VkAttachmentDescription:
VkAttachmentDescription colorAttachmentDescription{
	0,  // .flags
	mSwapChainImageFormat,  // .format
	VK_SAMPLE_COUNT_1_BIT,  // .samples
	VK_ATTACHMENT_LOAD_OP_CLEAR,  // .loadOp
	VK_ATTACHMENT_STORE_OP_STORE,  // .storeOp
	VK_ATTACHMENT_LOAD_OP_DONT_CARE,  // .stencilLoadOp
	VK_ATTACHMENT_STORE_OP_DONT_CARE,  // .stencilStoreOp
	VK_IMAGE_LAYOUT_UNDEFINED,  // .initialLayout
	VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,  // .finalLayout
};2.2. 子通道的依赖关系
子通道间的依赖关系通过结构体VkSubpassDependency描述:
typedef struct VkSubpassDependency {
    uint32_t srcSubpass;
    uint32_t dstSubpass;
    VkPipelineStageFlags srcStageMask;
    VkPipelineStageFlags dstStageMask;
    VkAccessFlags srcAccessMask;
    VkAccessFlags dstAccessMask;
    VkDependencyFlags dependencyFlags;
} VkSubpassDependency;其中,
srcSubpass, dstSubpass:渲染通道中,子通道数组的索引;
srcStageMask, dstStageMask: 分别指定源子通道与目标子通道的哪些管线将使用数据;
srcAccessMask, dstAccessMask: 分别指定源子通道与目标子通道如何访问数据。
按照如下方式填充结构体:
VkSubpassDependency subpassDependency{
	VK_SUBPASS_EXTERNAL,  // .srcSubpass
	0,  // .dstSubpass
	VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,  // .srcStageMask
	VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,  // .dstStageMask
	0,  // .srcAccessMask
	VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,  // .dstAccessMask
	0,  // dependencyFlags
};2.3. 创建渲染通道
现在,就可以填充结构体VkRenderPassCreateInfo了:
VkRenderPassCreateInfo renderPassCreateInfo{
	VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
	nullptr,
	0,
	1,  // .attachmentCount
	&colorAttachmentDescription,  // .pAttachments
	1,  // .subpassCount
	&subpassDescription,  // .pSubpasses
	1,  // dependencyCount
	&subpassDependency,  // .pDependencies
};在VulkanApp类中定义成员mRenderPass表示渲染通道:
VkRenderPass mRenderPass;  // 渲染管线最后,使用函数vkCreateRenderPass创建渲染通道:
if_fail(
	vkCreateRenderPass(mDevice, &renderPassCreateInfo, nullptr, &mRenderPass),
	"failed to create render pass!"
);
Log("create render pass successfully");不要忘记在析构函数中销毁渲染通道:
vkDestroyRenderPass(mDevice, mRenderPass, nullptr);3. 到目前为止的完整代码
这一节中,出现了许多全新的概念,有的可能还没搞清楚,有的目前并没有那么重要。在下一篇文章中,我们将介绍整个图形管线(VkPipeline)的创建,随着更加深入地学习,对于这些概念的认识也会更加清晰。
到目前为止的完整代码
#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>
#include <iostream>
#include <vector>
using std::vector;
#include <cstring>
#define Log(message) std::cout << "[INFO] " << message << std::endl
#define Error(message) std::cerr << "[ERROR] " << message << std::endl; exit(-1)
static void if_fail(VkResult result, const char* message);
class VulkanApp {
public:
	VulkanApp() {
		glfwInit();  // 初始化glfw库
		glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);  // 禁用OpenGL相关的API
		glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);  // 禁止调整窗口大小
		createInstance();
		createSurface();
		selectPhysicalDevice();
		createDevice();
		createSwapChain();
		createRenderPass();
	}
	~VulkanApp() {
		vkDestroyRenderPass(mDevice, mRenderPass, nullptr);
		for (auto swapChainImageView : mSwapChainImageViews) {
			vkDestroyImageView(mDevice, swapChainImageView, nullptr);
		}
		vkDestroySwapchainKHR(mDevice, mSwapChain, nullptr);
		vkDestroyDevice(mDevice, nullptr);
		vkDestroySurfaceKHR(mInstance, mSurface, nullptr);
		vkDestroyInstance(mInstance, nullptr);
		glfwDestroyWindow(mWindow);
		glfwTerminate();
	}
	void Run() {
		while (!glfwWindowShouldClose(mWindow)) {
			glfwPollEvents();
		}
	}
private:
	const vector<const char*> mRequiredLayers = {
		"VK_LAYER_KHRONOS_validation"
	};
	const vector<const char*> mRequiredExtensions = {
		VK_KHR_SWAPCHAIN_EXTENSION_NAME,  // 等价于字符串"VK_KHR_swapchain"
	};
	VkInstance mInstance;  // 实例
	VkPhysicalDevice mPhysicalDevice;  // 物理设备
	int mGraphicsQueueFamilyIndex = -1;  // 支持图形功能的队列族索引
	int mPresentQueueFamilyIndex = -1;  // 支持显示功能的队列族索引
	int mWidth = 800;  // 窗口宽度
	int mHeight = 600;  // 窗口高度
	GLFWwindow* mWindow = nullptr;  // glfw窗口指针
	VkSurfaceKHR mSurface;  // 表面
	VkSwapchainKHR mSwapChain;  // 交换链
	vector<VkImage> mSwapChainImages;  // 交换链的图像
	vector<VkImageView> mSwapChainImageViews;  // 交换链的图像视图
	VkFormat mSwapChainImageFormat;  // 交换链的图像格式
	VkDevice mDevice;  // (逻辑)设备
	VkQueue mGraphicsQueue;  // 支持图形的队列
	VkQueue mPresentQueue;  // 支持显示的队列
	VkRenderPass mRenderPass;  // 渲染管线
	void createInstance() {
		/* 填充VkApplicationInfo结构体 */
		VkApplicationInfo appInfo{
			VK_STRUCTURE_TYPE_APPLICATION_INFO,  // .sType
			nullptr,  // .pNext
			"I don't care",  // .pApplicationName
			VK_MAKE_VERSION(1, 0, 0),  // .applicationVersion
			"I don't care",  // .pEngineName
			VK_MAKE_VERSION(1, 0, 0),  // .engineVersion
			VK_API_VERSION_1_0,  // .apiVersion
		};
		/* 获取glfw要求支持的扩展 */
		uint32_t glfwExtensionCount = 0;
		const char** glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
		/* 输出glfw所需的扩展 */
		std::cout << "[INFO] glfw needs the following extensions:\n";
		for (int i = 0; i < glfwExtensionCount; i++) {
			std::cout << "    " << glfwExtensions[i] << std::endl;
		}
		/* 填充VkInstanceCreateInfo结构体 */
		VkInstanceCreateInfo instanceCreateInfo{
			VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,  // .sType
			nullptr,  // .pNext
			0,  // .flags
			&appInfo,  // .pApplicationInfo
			mRequiredLayers.size(),  // .enabledLayerCount
			mRequiredLayers.data(),  // .ppEnabledLayerNames
			glfwExtensionCount,  // .enabledExtensioncount
			glfwExtensions,  // .ppEnabledExtensionNames
		};
		/* 如果创建实例失败,终止程序 */
		if_fail(
			vkCreateInstance(&instanceCreateInfo, nullptr, &mInstance),
			"failed to create instance"
		);
	}
	void createSurface() {
		mWindow = glfwCreateWindow(mWidth, mHeight, "Vulkan App", nullptr, nullptr);  // 创建glfw窗口
		if (mWindow == nullptr) {
			std::cerr << "failed to create window\n";
			exit(-1);
		}
		/* 创建VkSurfaceKHR对象 */
		if_fail(
			glfwCreateWindowSurface(mInstance, mWindow, nullptr, &mSurface),
			"failed to create surface"
		);
	}
	void selectPhysicalDevice() {
		/* 查找所有可选的物理设备 */
		uint32_t physicalDeviceCount = 0;
		vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, nullptr);
		vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
		vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, physicalDevices.data());
		mPhysicalDevice = VK_NULL_HANDLE;
		for (VkPhysicalDevice physicalDevice : physicalDevices) {
			/* 1. 检查物理设备是否支持扩展 */
			/* 获取物理设备支持的扩展信息 */
			uint32_t extensionCount = 0;
			vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, nullptr);
			vector<VkExtensionProperties> availableExtensions(extensionCount);
			vkEnumerateDeviceExtensionProperties(physicalDevice, nullptr, &extensionCount, availableExtensions.data());
			bool isAllRequiredExtensionsSupported = true;  // 检查此物理设备是否支持所有的扩展
			for (const char* requiredExtensionName : mRequiredExtensions) {
				bool isSupported = false;
				for (const auto& availableExtension : availableExtensions) {
					if (strcmp(requiredExtensionName, availableExtension.extensionName) == 0) {
						isSupported = true;
						break;
					}
				}
				if (isSupported == false) {
					isAllRequiredExtensionsSupported = false;
					break;
				}
			}
			if (isAllRequiredExtensionsSupported) {
				Log("all required extensions are supported");
			}
			else {
				continue;
			}
			/* 2. 检查物理设备是否支持几何着色器 */
			VkPhysicalDeviceFeatures physicalDeviceFeatures;
			vkGetPhysicalDeviceFeatures(physicalDevice, &physicalDeviceFeatures);
			if (physicalDeviceFeatures.geometryShader) {
				Log("geometry shader is supported");
			}
			else {
				continue;
			}
			/* 获取队列族的信息 */
			uint32_t queueFamilyCount = 0;
			vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, nullptr);
			vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
			vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueFamilyCount, queueFamilies.data());
			for (int i = 0; i < queueFamilyCount; i++) {
				/*  5.3. 检查是否支持图形功能 */
				if (mGraphicsQueueFamilyIndex < 0 && (queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)) {
					Log("find graphics queue family index " << i);
					mGraphicsQueueFamilyIndex = i;  // 保留队列族的索引
				}
				/*  5.4. 检查是否支持显示功能  */
				if (mPresentQueueFamilyIndex < 0) {
					VkBool32 isPresentSupport = false;
					vkGetPhysicalDeviceSurfaceSupportKHR(physicalDevice, i, mSurface, &isPresentSupport);
					if (isPresentSupport) {
						mPresentQueueFamilyIndex = i;
						Log("find present queue family index " << i);
					}
					else {
						Log("present is not supported");
					}
				}
			}
			if (mGraphicsQueueFamilyIndex >= 0 && mPresentQueueFamilyIndex >= 0) {
				mPhysicalDevice = physicalDevice;
				/*  获取物理设备的属性  */
				VkPhysicalDeviceProperties physicalDeviceProperties;
				vkGetPhysicalDeviceProperties(mPhysicalDevice, &physicalDeviceProperties);
				Log("select physical device: " << physicalDeviceProperties.deviceName);
			}
		}
		/* 如果没找到合适的物理设备 */
		if (mPhysicalDevice == VK_NULL_HANDLE) {
			Error("can't find suitable physical device");
		}
	}
	void createDevice() {
		/*  填充VkDeviceQueueCreateInfo结构体  */
		vector<VkDeviceQueueCreateInfo> deviceQueueCreateInfos;
		float queuePriority = 1.0f;  // 必须指定优先级,如果pQueuePriorities设置为nullptr会报错
		VkDeviceQueueCreateInfo deviceGraphicsQueueCreateInfo{
			VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,  // .sType
			nullptr,  // .pNext
			0,  // .flags
			mGraphicsQueueFamilyIndex,  // .queueFamilyIndex
			1,  // .queueCount
			&queuePriority,  // .pQueuePriorities
		};
		deviceQueueCreateInfos.push_back(deviceGraphicsQueueCreateInfo);
		if (mPresentQueueFamilyIndex != mGraphicsQueueFamilyIndex) {
			VkDeviceQueueCreateInfo devicePresentQueueCreateInfo{
				VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,  // .sType
				nullptr,  // .pNext
				0,  // .flags
				mPresentQueueFamilyIndex,  // .queueFamilyIndex
				1,  // .queueCount
				&queuePriority,  // .pQueuePriorities
			};
			deviceQueueCreateInfos.push_back(devicePresentQueueCreateInfo);
		}
		/*  填充VkDeviceCreateInfo结构体  */
		VkDeviceCreateInfo deviceCreateInfo{
			VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,  // .sType
			nullptr,  // .pNext
			0,  // .flags
			deviceQueueCreateInfos.size(),  // .queueCreateInfoCount
			deviceQueueCreateInfos.data(),  // .pQueueCreateInfos
			mRequiredLayers.size(),  // .enabledLayerCount
			mRequiredLayers.data(),  // .ppEnabledLayerNames
			mRequiredExtensions.size(),  // .enabledExtensionCount
			mRequiredExtensions.data(),  // .ppEnabledExtensionNames
			nullptr,  // .pEnabledFeatureks
		};
		if_fail(
			vkCreateDevice(mPhysicalDevice, &deviceCreateInfo, nullptr, &mDevice),
			"failed to create device!"
		);
		Log("create device successfully");
		vkGetDeviceQueue(mDevice, mGraphicsQueueFamilyIndex, 0, &mGraphicsQueue);
		vkGetDeviceQueue(mDevice, mPresentQueueFamilyIndex, 0, &mPresentQueue);
	}
	void createSwapChain() {
		/*  获取物理设备对图像大小、数量的支持  */
		VkSurfaceCapabilitiesKHR surfaceCapabilities;
		vkGetPhysicalDeviceSurfaceCapabilitiesKHR(mPhysicalDevice, mSurface, &surfaceCapabilities);
		/*  获取物理设备对图像格式的支持  */
		uint32_t formatCount = 0;
		vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, mSurface, &formatCount, nullptr);
		vector<VkSurfaceFormatKHR> surfaceFormats(formatCount);
		vkGetPhysicalDeviceSurfaceFormatsKHR(mPhysicalDevice, mSurface, &formatCount, surfaceFormats.data());
		mSwapChainImageFormat = surfaceFormats[0].format;
		/*  填充交换链结构体  */
		int imageCount = surfaceCapabilities.minImageCount + 1 <= surfaceCapabilities.maxImageCount ?
			surfaceCapabilities.minImageCount + 1 : surfaceCapabilities.maxImageCount;  // 设置图像的数量
		VkSwapchainCreateInfoKHR swapchainCreateInfo{
			VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,  // .sType
			nullptr,  // .pNext
			0,  // .flags
			mSurface,  // .surface
			imageCount,  // .minImageCount
			surfaceFormats[0].format,  // .imageFormat
			surfaceFormats[0].colorSpace,  // .imageColorSpace
			surfaceCapabilities.currentExtent,  // imageExtent
			1,  // .imageArrayLayers
			VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,  // .imageUsage
			VK_SHARING_MODE_EXCLUSIVE,  // .imageSharingMode
			0,  // .queueFamilyIndexCount
			nullptr,  // .pQueueFamilyIndices
			surfaceCapabilities.currentTransform,  // .preTransform
			VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR,  // .compositeAlpha
			VK_PRESENT_MODE_FIFO_KHR,  // .presentMode
			VK_TRUE,  // .clipped
			VK_NULL_HANDLE,  // .oldSwapChain
		};
		/*  如果图形队列和展示队列不是同一个队列  */
		if (mGraphicsQueueFamilyIndex != mPresentQueueFamilyIndex) {
			swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
			swapchainCreateInfo.queueFamilyIndexCount = 2;
			uint32_t queueFamilyIndices[] = {
				mGraphicsQueueFamilyIndex, mPresentQueueFamilyIndex
			};
			swapchainCreateInfo.pQueueFamilyIndices = queueFamilyIndices;
		}
		/*  创建交换链  */
		if_fail(
			vkCreateSwapchainKHR(mDevice, &swapchainCreateInfo, nullptr, &mSwapChain),
			"failed to create swapchain!"
		);
		Log("create swapchain successfully");
		/*  获取交换链的图像  */
		uint32_t swapChainImagesCount = 0;
		vkGetSwapchainImagesKHR(mDevice, mSwapChain, &swapChainImagesCount, nullptr);
		mSwapChainImages.resize(swapChainImagesCount);
		vkGetSwapchainImagesKHR(mDevice, mSwapChain, &swapChainImagesCount, mSwapChainImages.data());
		/*  为每张图像创建对应的图像视图  */
		mSwapChainImageViews.resize(mSwapChainImages.size());
		for (size_t i = 0; i < mSwapChainImages.size(); i++) {
			VkImageViewCreateInfo imageViewCreateInfo{
				VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,  // .sType
				nullptr,  // .pNext
				0,  // .flags
				mSwapChainImages[i],  // .image
				VK_IMAGE_VIEW_TYPE_2D,  // .viewType
				surfaceFormats[0].format,  // .format
				{
					VK_COMPONENT_SWIZZLE_IDENTITY,
					VK_COMPONENT_SWIZZLE_IDENTITY,
					VK_COMPONENT_SWIZZLE_IDENTITY,
					VK_COMPONENT_SWIZZLE_IDENTITY,
				},   // .components
				{
					VK_IMAGE_ASPECT_COLOR_BIT,  // .aspectMask
					0,  // .baseMipLevel
					1,  // .levelCount
					0,  // .baseArrayLayer
					1,  // .layerCount
				},  // .subresourceRange
			};
			if_fail(
				vkCreateImageView(mDevice, &imageViewCreateInfo, nullptr, &mSwapChainImageViews[i]),
				"failed to create image views!"
			);
		}
	}
	void createRenderPass() {
		VkAttachmentReference colorAttachmentReference{
			0,  // .attachment, 上述attachment description的索引
			VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,  // .layout
		};
		VkSubpassDescription subpassDescription{
			0,  // .flags
			VK_PIPELINE_BIND_POINT_GRAPHICS,  // .pipelineBindPoint
			0,  // .inputAttachmentCount
			nullptr,  // .pInputAttachments
			1,  // .colorAttachmentCount
			&colorAttachmentReference,  // .pColorAttachments
			nullptr,  // .pResolveAttachments
			nullptr,  // .pDepthStencilAttachment
			0,  // .preserveAttachmentCount
			nullptr,  // .pPreserveAttachments
		};
		VkAttachmentDescription colorAttachmentDescription{
			0,  // .flags
			mSwapChainImageFormat,  // .format
			VK_SAMPLE_COUNT_1_BIT,  // .samples
			VK_ATTACHMENT_LOAD_OP_CLEAR,  // .loadOp
			VK_ATTACHMENT_STORE_OP_STORE,  // .storeOp
			VK_ATTACHMENT_LOAD_OP_DONT_CARE,  // .stencilLoadOp
			VK_ATTACHMENT_STORE_OP_DONT_CARE,  // .stencilStoreOp
			VK_IMAGE_LAYOUT_UNDEFINED,  // .initialLayout
			VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,  // .finalLayout
		};
		VkSubpassDependency subpassDependency{
			VK_SUBPASS_EXTERNAL,  // .srcSubpass
			0,  // .dstSubpass
			VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,  // .srcStageMask
			VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,  // .dstStageMask
			0,  // .srcAccessMask
			VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,  // .dstAccessMask
			0,  // dependencyFlags
		};
		VkRenderPassCreateInfo renderPassCreateInfo{
			VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
			nullptr,
			0,
			1,  // .attachmentCount
			&colorAttachmentDescription,  // .pAttachments
			1,  // .subpassCount
			&subpassDescription,  // .pSubpasses
			1,  // dependencyCount
			&subpassDependency,  // .pDependencies
		};
		if_fail(
			vkCreateRenderPass(mDevice, &renderPassCreateInfo, nullptr, &mRenderPass),
			"failed to create render pass!"
		);
		Log("create render pass successfully");
	}
};
int main() {
	VulkanApp app;
	app.Run();
}
static void if_fail(VkResult result, const char* message) {
	if (result != VK_SUCCESS) {
		std::cerr << "[error] " << message << std::endl;
		exit(-1);
	}
}Vulkan学习苦旅06:创建渲染通道(VkRenderPass)的更多相关文章
- springmvc学习笔记---idea创建springmvc项目
		前言: 真的是很久没搞java的web服务开发了, 最近一次搞还是读研的时候, 想来感慨万千. 英雄没落, Eclipse的盟主地位隐隐然有被IntelliJ IDEA超越的趋势. Spring从2. ... 
- DirectX11 学习笔记3 - 创建一个立方体 和 轴
		该方案将在进一步的程序 面向对象. 独立的模型类.更像是一个框架. 其中以超过遇到了一个非常有趣的问题,.获得一晚.我读了好几遍,以找到其他的列子.必须放在某些功能Render里面实时更新,而不是仅仅 ... 
- 机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记
		机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间: ... 
- 关于Unity中混合模式、Alpha测试、深度测试、通道遮罩、面剔除的使用----渲染通道通用指令(二)
		混合模式 着色完成后,需要把颜色混合到帧缓冲区里面,涉及到源和目标. 1:在所有计算完成后,决定当前的计算结果输出到帧缓冲区时,如何混合源和目标,通常用来绘制半透明的物体;2: Blend Off 关 ... 
- iOS学习笔记06—Category和Extension
		iOS学习笔记06—Category和Extension 一.概述 类别是一种为现有的类添加新方法的方式. 利用Objective-C的动态运行时分配机制,Category提供了一种比继承(inher ... 
- Java学习笔记-多线程-创建线程的方式
		创建线程 创建线程的方式: 继承java.lang.Thread 实现java.lang.Runnable接口 所有的线程对象都是Thead及其子类的实例 每个线程完成一定的任务,其实就是一段顺序执行 ... 
- Netty学习之客户端创建
		一.客户端开发时序图 图片来源:Netty权威指南(第2版) 二.Netty客户端开发步骤 使用Netty进行客户端开发主要有以下几个步骤: 1.用户线程创建Bootstrap Bootstrap b ... 
- ASP.NET MVC 5 学习教程:创建连接字符串
		原文 ASP.NET MVC 5 学习教程:创建连接字符串 起飞网 ASP.NET MVC 5 学习教程目录: 添加控制器 添加视图 修改视图和布局页 控制器传递数据给视图 添加模型 创建连接字符串 ... 
- 跟着刚哥学习Spring框架--创建HelloWorld项目(一)
		1.Spring框架简介 Spring是一个开源框架,Spring是在2003年兴起的一个轻量级的开源框架,由Rod johnson创建.主要对JavaBean的生命周期进行管理的轻量级框架,Spri ... 
- angular学习笔记(二)-创建angular模块
		如果在页面的html标签(或任意标签)中添加ng-app,表示对整个页面应用angular来管理. 他是一个模块. 模块有助于把东西从全局命名空间中隔离. 今天学习如何自定义创建模块: <!DO ... 
随机推荐
- vscode如何优雅的拥抱eslint
			https://www.toutiao.com/a6826129210260587019/?tt_from=weixin&utm_campaign=client_share&wxsha ... 
- v-cloak指令用法
			插值表达式存在的问题:'闪动' 如何解决该问题:使用v-cloak指令 解决该问题的原理:先隐藏,替换好值之后再显示最终的值 背后的原理:先通过样式隐藏内容,然后在内存中进行值得替换,替换好之后再显示 ... 
- Vue第三篇 Vue组件
			01-组件的全局注册 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ... 
- Redis 使用 hyperLogLog 实现请求ip去重的浏览量
			本文为博主原创,转载请注明出处: 未完,待续.... 
- 15-触摸按键控制LED灯
			1.触摸按键 触摸按键可分为四大类:电阻式,电容式,红外感应式和表面声波式 电阻式触摸按键使用人体破压电阻,改变电阻,实现开关效果,耐用性差,很少使用 红外感应式是通过红外扫描的方式,一般使用在比较恶 ... 
- 【canvas】 绘制七巧板
			效果图: 代码 : <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ... 
- MySQL复习——20211027
			MYSQL MySQL创建数据库 我们可以在登录MySQL服务后,使用create命令创建数据库,语法如下: CREATE DATABASE 数据库名; 使用root用户登录,root用户拥有最高权限 ... 
- [转帖]TIKV扩容之刨坑填坑
			01 背景 某tidb集群收到告警,TIKV 节点磁盘使用率85%以上,联系业务无法快速删除数据,于是想到扩容TIKV 节点,原先TIKV 节点机器都是6TB的硬盘,目前只有3TB的机器可扩,也担心r ... 
- [转帖]使用 TiUP 部署 TiDB 集群
			https://docs.pingcap.com/zh/tidb/stable/production-deployment-using-tiup TiUP 是 TiDB 4.0 版本引入的集群运维工具 ... 
- [转帖]Spring Cloud Alibaba Nacos 注册中心使用教程
			一. 什么是Nacos Nacos是一个更易于构建云原生应用的动态服务发现(Nacos Discovery ).服务配置(Nacos Config)和服务管理平台,集注册中心+配置中心+服务管理于一身 ... 
