介绍

NTRU(Number Theory Research Unit),NTRU是一个带有专利保护的开源公开密钥加密系统,使用基于格的加密算法来加密数据。它包括两部分算法:NTRUEncrypt用来加密,NTRUSign用来进行数字签名,可以抗量子计算机攻击。

百度百科:链接  参考:链接1   链接2

算法流程

详细介绍:链接

秘钥产生

NTRU算法构建在多项式环R=Z [X] / XN - 1上,所有多项式为次数为N-1的一元多项式,L(a,b)表示环中有a个系数为1,b个系数为-1,其余的为0的全体整系数多项式

最后,公钥,私钥( f,fp

难点:

1、如何判断多项式是否存在逆元?

可以将多项式系数构成一个循环矩阵,然后根据线性代数相关知识,求解矩阵行列式的值,根据行列式是否是0判断多项式的逆是否存在。

2、若逆元存在,如何求?

原理:扩展欧几里得算法

参考:链接

3、多项式是如何运算的?

3.1 多项式如何卷积?

多项式a,b,做卷积 a*b :

快速卷积计算:请参考(链接

加密

dr 表示多项式  r 中非零系数的个数

 难点:

1、明文消息是如何编码成多项式的?

参考:信息论与编码

2、如何随机生成多项式?

在进行NTRU算法时,需要随机产生三个多项式f,g,r,下面给出系数为三元整数 [-1,0,1] 的(NTRU-1998)f 多项式的随机产生算法:

算法基本思想:

1、将 f 中系数的位置作为要产生的随机数 i ,如果产生的随机数个数为奇数时,则令 f(i) = 1,产生的随机数个数为偶数时,则令 f(i) = -1,由于是以 f 中系数的位置作为随机数,则 f 中 1 和 -1 分布式均匀的

2、d 表示 f 中产生系数为1的个数为d,产生系数为-1的个数为  d-1

3、步骤1~3 是数据初始化

4、步骤4使用时间函数clock() 作为随机数种子

5、步骤5~12是do循环,其中步骤6产生0 ~ N-1 之间的随机数,步骤7~9判断值为0时,将1或者-1作为 f(i) 的值,步骤11 判断1和-1的个数之和为2d-1时退出

解密

 难点:

1、如何计算多项式模一个多项式?

例:

算法:

过程:

疑问:与p好像没关系啊!!!

2、如何计算 ( x+2 )*a(x)?

简单举例

NTRU的更多相关文章

  1. Windows7 QT5.6.0(64位)使用mysql(64位)环境搭建详解

    1 说明 使用环境为:Windows7 VS2015 QT5.6.0(64位),MYSQL 5.7.13(64位). 网上各种错误.模糊.抽象的资料,配置环境花了半天,痛定思痛,总结出来,方便后来人. ...

  2. centos6升级openssh至7.9

    1.为了防止升级失败登陆不了,所以需要安装telnet mkdir /root/ssh_updateyum install -y telnet-serveryum install -y xinetd ...

  3. CentOS6、7升级Openssh至7.9

    出于安全考虑,定期使用Nessus对服务器进行扫描,最新Nessus提示服务器的SSH版本有漏洞,所以把SSH升级到最新版本 1.为了防止升级失败登陆不了,所以需要安装telnet mkdir /ro ...

  4. liboqs-量子安全密码算法开源C库

    liboqs是一个用于量子安全密码算法的开源C库. 一,概述 liboqs提供: 量子安全 密钥封装机制(KEM)和数字签名算法的开源实现的集合: 这些算法的通用API: 测试工具和基准测试例程. l ...

  5. Better Key Sizes (and Attacks) for LWE-Based Encryption

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文 Abstract 基于“learning with errors”(LWE)问题,分析了理 ...

  6. NGK引入反量子加密系统来应对量子计算攻击

    当前,区块链和分布式账本技术已有了长足发展并广泛应用与多种场景中,原因在于其提供透明性,冗余性和问责性的能力.就区块链而言,此类特征是通过公钥加密和哈希函数提供的.但是,随着量子计算机技术的发展和量子 ...

  7. NGK以强大的创新能力赋予NGK公链超级实用的特性

    公链从大趋势看是一个不断迭代的过程,不管是共识算法.网络架构.开发者协议都在一代一代不断完善跟创新. NGK公链作为公链赛道上的后起之秀,对于主流公链技术的局限性以及下一代公链技术的发展方向都有非常清 ...

  8. 写给开发人员的实用密码学(七)—— 非对称密钥加密算法 RSA/ECC

    本文部分内容翻译自 Practical-Cryptography-for-Developers-Book,笔者补充了密码学历史以及 openssl 命令示例,并重写了 RSA/ECC 算法原理.代码示 ...

  9. Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme-2013:解读

    本文记录阅读此论文的笔记 摘要 (1)1996年,HPS三人提出一个格上的高效加密方案,叫做NTRUEncrypt,但是没有安全性证明:之后2011年,SS等人修改此方案,将其安全规约到标准格上的困难 ...

  10. 文章学习:TPRE:分布式门限代理重加密

    学习文章:TPRE:分布式门限代理重加密 前言 成方金科新技术实验室与隐语团队合作,构建了"基于国密的分布式门限代理重加密算法TPRE",为用户提供了一种安全.高效.自主可控的数据 ...

随机推荐

  1. 题解:CF634A Island Puzzle

    CF634A Island Puzzle 题解 分析 由于我们仅能移动 \(0\),所以其它数字的相对顺序较原来应该是不变的,所以我们从环中删除 \(0\) 再判断相对位置即可. 还有需要注意的是本题 ...

  2. 2023年10月,红米(小米)note 8 pro 优化记

    看了红米的note 13 pro和note 12 turbo的参数和价格后,我决定下单买个note8 pro的手机壳,确实有新手机的感觉了. 我note8 pro手机参数如下 MIUI 12.0.5 ...

  3. 贴代码框架PasteForm特性介绍之markdown和richtext

    简介 PasteForm是贴代码推出的 "新一代CRUD" ,基于ABPvNext,目的是通过对Dto的特性的标注,从而实现管理端的统一UI,借助于配套的PasteBuilder代 ...

  4. Codeforces Round 988 (Div. 3) E题解析

    E题 题目链接 Codeforces Round 988 (Div. 3) 题目描述 题目的思路 根据题目的意思,我们可以推断出算法时间复杂度应该在O(N) 对于这道题而言,我们可以分析下思路 首先我 ...

  5. 纯HTML5+CSS3实现一棵自己跳舞的树

    代码没有多少,也没有用到任何图片,就实现了一棵可以自己跳舞的树.文件组成就简简单单的一个html和一个css html部分并不是很复杂,就是一些空的div,然后加上html模板也就那么十来行代码 最关 ...

  6. 用python 将数字每三组分割

    def cut_num(n, sep=','): # 第一个参数是要传递的数字,第二个是分隔符 s = str(abs(n))[::-1] groups = [] i = 0 while i < ...

  7. 深入源码之JDK Logging

    JDK从1.4开始提供Logging实现,据说当初JDK打算采用Log4J的,后来因为某些原因谈判没谈拢,然后就自己开发了一套,不知道是为了报复而故意不沿用Log4J的命名方式和抽象方式,还是开发这个 ...

  8. 内网穿透之frp

    官网文档:https://gofrp.org 1 Frp介绍frp 是一个开源.简洁易用.高性能的内网穿透和反向代理软件,支持 tcp, udp, http, https等协议.frp 项目官网是 h ...

  9. Mybatis【11】-- Mybatis Mapper动态代理怎么写?

    目录 1.回顾Mybatis执行sql的流程 2.mapper动态代理怎么写? 3.mapper动态代理怎么做的? 1.回顾Mybatis执行sql的流程 在之前的代码中我们的运行过程再梳理一下,首先 ...

  10. Echarts 提示组件

    1.开启指示器 默认情况下,指示器是关闭状态,如果需要开启,直接配置tooltip字段即可 var option = { tooltip:{}, } 2.指示器的触发类型 触发类型的字段为trigge ...