判别式 AI 与生成式 AI
本文摘选来自: AI 智能体开发指南
一、背景
为了解决不同的应用场景,在AI的发展过程中,机器学习模型逐步分化为 判别式(Discriminative)和生成式(Generative) 两各技术路线,从而形成了AI的两大派别。它们分别在分类、回归、模式识别以及数据生成等任务中发挥核心作用。
为了避免在AI技术选型过程中走弯路,为应用场景匹配不合适的AI,我们有必要了解两种AI的核心差异。
二、判别式AI:模式识别与分类任务的核心
判别式AI模型主要用于分类和预测任务,目标是建模输入(X)与输出(Y)之间的决策边界,即直接学习P(Y|X)。典型的判别式算法包括 逻辑回归(Logistic Regression)、支持向量机(SVM)、随机森林(Random Forest)、深度神经网络(DNN) 等。这类模型在计算机视觉、语音识别、自然语言处理等领域发挥了巨大作用。例如,2012年AlexNet在ImageNet挑战赛上大获成功,证明了深度卷积神经网络(CNN)在图像分类任务上的卓越能力。后续的ResNet、EfficientNet等模型进一步推动了判别式AI的发展,使其在目标检测、语音转文字、情感分析等任务上达到了接近人类水平的表现。
在自然语言处理领域,BERT等自监督学习的预训练模型也属于判别式AI的范畴。BERT的训练目标是通过 掩码语言模型(Masked Language Model, MLM) 预测缺失单词,其双向上下文理解能力极大提升了AI的文本理解能力,使其广泛应用于信息检索、情感分析、机器翻译等任务。
值得一提的是,判别式AI对硬件处理能力的要求更低,甚至可以在移动终端上运行,如图1。
基于AI技术的翻译机
(基于AI技术的翻译机)
三、生成式AI:从数据学习到创造新内容
与判别式模型不同,生成式AI的目标是学习数据的分布,并生成与训练数据相似的新样本,即建模P(X) 或 P(X|Z)(Z为隐变量,即没有预先定义的变量,隐变量的存在是判别式AI准确率缺陷的主要成因)。生成式模型不仅可以用于数据增强,还能在无标签数据环境下进行自监督学习,为AI带来了更广泛的应用场景。
生成式AI的早期探索始于隐马尔可夫模型(HMM)和玻尔兹曼机(Boltzmann Machines),但真正的突破出现在2014年,生成对抗网络(GANs) 的提出引发了AI在图像生成领域的革命。GAN由生成器(Generator) 和 判别器(Discriminator) 组成,通过博弈的方式不断优化,使生成的数据越来越接近真实样本。2017年,前文介绍的BERT/Transformer提出后,生成式AI进入快速发展阶段,OpenAI基于此架构推出的GPT系列(Generative Pre-trained Transformer)成为生成式AI的标志性成果。GPT-3、GPT-4等大规模语言模型能够基于大量文本数据进行预训练,并在下游任务中表现出极强的语言理解与生成能力。生成式AI不仅限于文本生成,还广泛应用于多模态领域,如文本生成图像(如图2)、音频合成、视频生成等。多模态生成式AI的进步,使得AI能够更自然地理解和创造内容,推动了艺术创作、设计自动化、游戏开发等多个行业的变革。
(图2:使用通义万象生成图片)
四、判别式 vs 生成式:优势、局限性与融合趋势
尽管判别式AI和生成式AI在建模方式和应用场景上有所不同,但二者在实践中往往相辅相成。判别式AI擅长分类、检测和回归任务,计算效率高、泛化能力强,在生产环境中更易部署。但其主要局限在于数据依赖性强、无法生成新数据,因此在低数据场景或创新内容生成方面能力有限。
相比之下,生成式AI的优势在于能够建模数据的分布并生成新样本,在低数据场景下仍能有效工作,适用于数据增强、仿真模拟、个性化内容创作等任务。然而,生成式AI往往计算成本较高,训练过程不稳定,并存在模式崩溃(Mode Collapse)、难以控制生成内容等问题。此外,由于生成式AI的内容高度依赖训练数据,其在真实性、可控性和伦理问题上也面临较大挑战。详细对比如图3所示。
(图3:判别式AI与生成AI对比)
随着AI技术的发展,判别式和生成式的融合趋势越来越明显。例如,GAN本身就结合了判别模型和生成模型的优势,而近年来的自监督学习(Self-Supervised Learning, SSL) 也开始采用生成式预训练+判别式微调的策略。GPT-4等大模型在预训练阶段采用自回归生成方式,但在推理过程中可以进行判别式优化,以提高模型的可靠性和稳定性。这种趋势表明,未来的AI系统可能不再严格区分判别式和生成式,而是结合二者的优点,实现更强的泛化能力和创造力。
五、典型应用场景示例
活字格低代码开发平台可引入判别式AI和生成式AI,加速新技术落地。
5.1 判别式AI:增强型OCR(快递面单识别)
需求概述:通过快递面单来自动解析出收发件人信息
核心能力:AI增强型OCR(插件:百度AI)
下载地址:https://marketplace.grapecity.com.cn/ApplicationDetails?productID=SP2309140002
5.2 生成式AI:文本生成workflow(文章撰写)
需求概述:基于用户提供的关键字自动编写对SEO友好的市场宣传用文章
核心能力:AI助手命令(内置插件)
工程地址:https://gitee.com/low-code-dev-lab/hzg-demo-web-api-ai-integration
本文摘选来自: AI 智能体开发指南
判别式 AI 与生成式 AI的更多相关文章
- 生成式AI会成为是人工智能的未来吗
生成式 AI 是一项创新技术,可帮助算法人员生成以前依赖于业务员的模型,提供创造性的结果,而不会因业务员思想和经验而产生任何差错. 人工智能中的这项新技术确定了输入的原始模型,以生成演示训练数据特征. ...
- 生成式AI对业务流程有哪些影响?企业如何应用生成式AI?一文看懂
集成与融合类ChatGPT工具与技术,以生成式AI变革业务流程 ChatGPT背后的生成式AI,聊聊生成式AI如何改变业务流程 ChatGPT月活用户过亿,生成式AI对组织的业务流程有哪些影响? 生成 ...
- 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)
目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...
- AI 判别式模型和生成式模型
判别式模型(discriminative model) 生成式模型(generative model) 对于输入x,类别标签y:产生式模型估计它们的联合概率分布P(x,y)判别式模型估计条件概率分布P ...
- Strong AI Versus Weak AI
Computer Science An Overview _J. Glenn Brookshear _11th Edition The conjecture that machines can be ...
- 人机ai五子棋 ——五子棋AI算法之Java实现
人机ai五子棋 下载:chess.jar (可直接运行) 源码:https://github.com/xcr1234/chess 其实机器博弈最重要的就是打分,分数也就是权重,把棋子下到分数大的地方, ...
- 判别式模型 vs. 生成式模型
1. 简介 生成式模型(generative model)会对\(x\)和\(y\)的联合分布\(p(x,y)\)进行建模,然后通过贝叶斯公式来求得\(p(y|x)\), 最后选取使得\(p(y|x) ...
- Excel催化剂开源第25波-Excel调用百度AI,返回AI结果
现成的这些轮子,无需调用网页,直接本地离线即可生成). 当然在AI时代,少不了各种AI接口的使用场景,普通开发者只需聚焦在自己的业务场景上,这些AI底层技术,只需类似水煤电一般去BAT这些大厂那里去消 ...
- Machine Learning系列--判别式模型与生成式模型
监督学习的任务就是学习一个模型,应用这一模型,对给定的输入预测相应的输出.这个模型的一般形式为决策函数:$$ Y=f(X) $$或者条件概率分布:$$ P(Y|X) $$监督学习方法又可以分为生成方法 ...
- 从k8s 的声明式API 到 GPT的 提示语
命令式 命令式有时也称为指令式,命令式的场景下,计算机只会机械的完成指定的命令操作,执行的结果就取决于执行的命令是否正确.GPT 之前的人工智能就是这种典型的命令式,通过不断的炼丹,告诉计算机要怎么做 ...
随机推荐
- 当 GPT 告诉我9.11大于9.9的时候:AI 仍需完善的一面
在当今 AI 技术飞速发展的时代,我们对其能力寄予了厚望,期待它们能够准确无误地处理各种任务.然而,最近发生的一件事情让我们意识到,AI 仍然有需要改进和完善的地方. GPT 作为一款备受瞩目的语言模 ...
- docker - [14] redis集群部署
本章节是在一个服务器上进行演示 一.准备工作 (1)创建redis集群使用的网络:redis-net docker network create redis-net --subnet 172.38.0 ...
- Linux 环境变量指北
Linux 环境变量指北 一.终端:Login Shell 二.Systemd 的配置方式 三.图形界面 DM(Display Manager) 显示管理器 DE(Desktop Environmen ...
- DeepSeek 不太稳定?那就搭建自己的 DeepSeek 服务
概述 DeepSeek-R1 发布 DeepSeek 在 2025 年给我们送来一份惊喜,1 月 20 号正式发布第一代推理大模型 DeepSeek-R1.这个模型在数学推理.代码生成和复杂问题解决等 ...
- Chrome打开知乎报ERR_HTTP2_PROTOCOL_ERROR错误的问题
打开 chrome://flags/ 页面 找到 Block insecure private network requests. 和 Enable Trust Tokens 两项 将其值从 Defa ...
- 有限元方法[Matlab]-笔记
<-- 访问笔记代码仓库 --> << MATLAB Codes for Finite Element Analysis - Solids and Structures (Fe ...
- TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
\3c span id="mce_marker" data-mce-type="bookmark">\3c /span>\3c span id=&q ...
- Qt QDateEdit下拉日历的样式设计
文章目录 QDateEdit样式设计 QDateEdit QCalendarWidget QDateEdit样式设计 最近做了一个用到QDateEdit的项目,涉及到对这个控件进行设计的方面,对于 ...
- ORACLE物理文件存储位置查询语句
在进行备份和恢复的时候,我们需要知道一些关于ORACLE物理文件存储的信息,这样我们才能判断我们所进行的备份是否完整.一个完整的备份需要包括的物理文件:控制文件联机重做日志文件归档日志文件数据文件因此 ...
- SQL Server 中的异常处理
为什么我们需要 SQL Server 中的异常处理? 让我们通过一个示例来了解 SQL Server 中异常处理的必要性.因此,创建一个 SQL Server 存储过程,通过执行以下查询来除以两个数字 ...