音频处理中的尺度--Bark尺度与Mel尺度
由于人耳对声音的感知(如:频率、音调)是非线性的,为了对声音的感知进行度量,产生了一系列的尺度(如:十二平均律),这里重点说下Bark尺度与Mel尺度。刚开始的时候,我自己也没弄明白这两个尺度的区别。后来才逐渐的明白他们的思考出发点,这里简单分享出来。
Bark(巴克)频率尺度是以Hz为单位,把频率映射到心理声学的24个临界频带上,第25个临界频带占据约:16K~20kHz的频率,1个临界频带的宽度等于一个Bark,简单的说,Bark尺度是把物理频率转换到心理声学的频率。Bark尺度频率的中心频率与临界带宽边界频率如下表所示:
| 临界频带 | 频率/Hz | ||
| Bark频带 | 中心频率 | 下界频率 | 上界频率 |
| 1 | 50 | 0 | 100 |
| 2 | 150 | 100 | 200 |
| 3 | 250 | 200 | 300 |
| 4 | 350 | 300 | 400 |
| 5 | 450 | 400 | 510 |
| 6 | 570 | 510 | 630 |
| 7 | 700 | 630 | 770 |
| 8 | 840 | 770 | 920 |
| 9 | 1000 | 920 | 1080 |
| 10 | 1170 | 1080 | 1270 |
| 11 | 1370 | 1270 | 1480 |
| 12 | 1600 | 1480 | 1720 |
| 13 | 1850 | 1720 | 2000 |
| 14 | 2150 | 2000 | 2320 |
| 15 | 2500 | 2320 | 2700 |
| 16 | 2900 | 2700 | 3150 |
| 17 | 3400 | 3150 | 3700 |
| 18 | 4000 | 3700 | 4400 |
| 19 | 4800 | 4400 | 5300 |
| 20 | 5800 | 5300 | 6400 |
| 21 | 7000 | 6400 | 7700 |
| 22 | 8500 | 7700 | 9500 |
| 23 | 10500 | 9500 | 12000 |
| 24 | 13500 | 12000 | 15500 |
| 25 | 18775 | 15500 | 22050 |
我发现有不少式子试图对上表进行建模,用的比较多的一个式子是(Zwicker,Terhardt 1980):
\[B = 13{\tan ^{ - 1}}\left( {\frac{{0.76f}}{{1000}}} \right) + 3.5{\tan ^{ - 1}}{\left( {\frac{f}{{7500}}} \right)^2}\]
上式中频率f代表中心频率,我把上面的式子在Matlab中代入进行计算,发现前5个Bark频带与计算出来的出入比较大,尚不知道这是什么原因。
Mel频率尺度也是一种频率映射感知模型,它描述的是音高感知的非线性映射,函数表示如下:
\[m = 1127.01048{\log _e}\left( {1 + \frac{f}{{700}}} \right)\]
要注意的一点是,这里的频率f单位是1kHz,也就是说,1kHz是Mel频率与以赫兹为单位的真实频率之间的参考点(1kHz=1000mel),另一方面,Mel一词来源于音乐术语melody,是旋律的频率分量与与音高感知之间距离的度量。
音频处理中的尺度--Bark尺度与Mel尺度的更多相关文章
- 音频采样中left-or right-justified(左对齐,右对齐), I2S时钟关系
音频采样中left-or right-justified(左对齐,右对齐), I2S时钟关系 原创 2014年02月11日 13:56:51 4951 0 0 刚刚过完春节,受假期综合症影响脑袋有点发 ...
- 【librosa】及其在音频处理中的应用
[持续更新] display specshow(data[, x_coords, y_coords, x_axis, …]) Display a spectrogram/chromagram/cqt/ ...
- AEC、AGC、ANS在视音频会议中的作用?
AGC是自动增益补偿功能(Automatic Gain Control),AGC可以自动调麦克风的收音量,使与会者收到一定的音量水平,不会因发言者与麦克风的距离改变时,声音有忽大忽小声的缺点.ANS是 ...
- SEPC:使用3D卷积从FPN中提取尺度不变特征,涨点神器 | CVPR 2020
论文提出PConv为对特征金字塔进行3D卷积,配合特定的iBN进行正则化,能够有效地融合尺度间的内在关系,另外,论文提出SEPC,使用可变形卷积来适应实际特征间对应的不规律性,保持尺度均衡.PConv ...
- paper 125:NSCT——Nonsubsampled contourlet 变换程序(尺度不变性问题研究)
原文地址:NSCT——Nonsubsampled contourlet 变换程序开发教程1作者:向望大海的鱼 08年,被老板逼得走投无路,xx所得项目看来是实在躲不过去,只好硬着头皮上.开发一款图像处 ...
- SPSS数据分析—多维尺度分析
在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也 ...
- paper 65 :尺度不变特征变换匹配算法[转载]
尺度不变特征变换匹配算法 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越.1.SIFT综述 尺度不变特征转换(Scale-invariant feature transf ...
- 第十二节、尺度不变特征(SIFT)
上一节中,我们介绍了Harris角点检测.角点在图像旋转的情况下也可以检测到,但是如果减小(或者增加)图像的大小,可能会丢失图像的某些部分,甚至导致检测到的角点发生改变.这样的损失现象需要一种与图像比 ...
- 认识数据-数据的计量尺度(Levels of Measurement)
一. 数据的计量尺度(Levels of Measurement) 一般认为,数据是对客观现象计量的结果.按照对事物计量的精确程度,可将所采用的计量尺度由低级到高级分为四个层次: 1.定类尺度(Nom ...
随机推荐
- BZOJ 5106 [CodePlus2017]汀博尔
[题解] 二分答案.r要设好,不能随便设置为max(s,len),不然check的时候会爆long long #include<cstdio> #include<algorithm& ...
- 通过注解配置Bean(2)
问:怎么用注解来配置bean与bean之间的引用关系? [组件装配] 1.<context:component-scan> 元素还会自动注册AutowiredAnnotationBeanP ...
- ssc项目Python爬虫心得
###今日心得 ####time.datetime 1.字符串格式到标准化格式:time.strptime(str, "%Y%m%d") 2.今天的标准化格式:today = da ...
- java 生成20位唯一ID,生成不会重复的20位数字----https://blog.csdn.net/weixin_36751895/article/details/70331781
java 生成20位唯一ID,生成不会重复的20位数字----https://blog.csdn.net/weixin_36751895/article/details/70331781
- Leetcode 86.分隔链表
分隔链表 给定一个链表和一个特定值 x,对链表进行分隔,使得所有小于 x 的节点都在大于或等于 x 的节点之前. 你应当保留两个分区中每个节点的初始相对位置. 示例: 输入: head = 1-> ...
- Jeecg+fixflow,工作流框架分享
工作流引擎使用fixflow. 动态表达使用jeecg. 不多说直接上源码. 注:本人使用的jdk为6.0.mysql.tomcat6.0 其中fixflow-expand 为eclips流程设计核心 ...
- 0213Zabbix通过percona监控MySQL
因为Zabbix自带的MySQL监控没有提供可以直接使用的Key,所以一般不采用,业界的同学们都使用Percona Monitoring Plugins 监控 MySQL的方式 Percona介绍 P ...
- NOIP2015 提高组合集
NOIP 2015 提高组 合集 D1 T1 神奇的幻方 题目让你干啥你就干啥,让你咋走你就咋走就完事儿了 #include <iostream> #include <cstdio& ...
- hello2 source analisis(notes)
该hello2应用程序是一个Web模块,它使用Java Servlet技术来显示问候语和响应.使用文本编辑器查看应用程序文件,也可以使用NetBeans IDE. 此应用程序的源代码位于 _tut-i ...
- Abstract factory抽象工厂--对象创建型
意图: 提供一个创建一系列相关或者相互依赖对象的接口,而无需指定它们具体的类. 别名:Kit 补充: 抽象产品A : (产品A1 和产品 A2) 抽象产品B : ( 产品B1 和 产品B2) 一般情况 ...