The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.

His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.

Input

The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .

Output

For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints 
0 < T <= 100 
0.0 <= P <= 1.0 
0 < N <= 100 
0 < Mj <= 100 
0.0 <= Pj <= 1.0 
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

Sample Input

3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05

Sample Output

2
4
6
题目大意:
给定一个浮点数和整数分别代表最低成功率,以及n户人家,接下来是n行人家的价值以及小偷被抓的概率,求不低于最低成功率能偷到的最大价值。
小偷成功的情况是都要成功,所以概率就是(1-p1)*(1-p2)....
#include <iostream>
#include <cstring>
using namespace std;
double a[],dp[],ans;
int v[];
int n;
int main()
{
int T;
cin>>T;
while(T--)
{
memset(dp,,sizeof dp);
cin>>ans>>n;
int maxn=;
for(int i=;i<=n;i++)
{
cin>>v[i]>>a[i];
maxn+=v[i];///找到最大可能的得到价值
}
dp[]=;
for(int i=;i<=n;i++)
for(int j=maxn;j>=v[i];j--)
dp[j]=max(dp[j],dp[j-v[i]]*(-a[i]));
for(int i=maxn;i>=;i--)
if(dp[i]>=(-ans))
{cout<<i<<'\n';break;}
}
return ;
}

 

Robberies(01背包)的更多相关文章

  1. hdu 2955 Robberies 0-1背包/概率初始化

    /*Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  2. HDU 2955 Robberies(01背包变形)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. hdu 2955 Robberies (01背包好题)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  4. hdu 2955 Robberies (01背包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 思路:一开始看急了,以为概率是直接相加的,wa了无数发,这道题目给的是被抓的概率,我们应该先求出总的 ...

  5. HDU——2955 Robberies (0-1背包)

    题意:有N个银行,每抢一个银行,可以获得\(v_i\)的前,但是会有\(p_i\)的概率被抓.现在要把被抓概率控制在\(P\)之下,求最多能抢到多少钱. 分析:0-1背包的变形,把重量变成了概率,因为 ...

  6. 【hdu2955】 Robberies 01背包

    标签:01背包 hdu2955 http://acm.hdu.edu.cn/showproblem.php?pid=2955 题意:盗贼抢银行,给出n个银行,每个银行有一定的资金和抢劫后被抓的概率,在 ...

  7. HDU 2955 Robberies --01背包变形

    这题有些巧妙,看了别人的题解才知道做的. 因为按常规思路的话,背包容量为浮点数,,不好存储,且不能直接相加,所以换一种思路,将背包容量与价值互换,即令各银行总值为背包容量,逃跑概率(1-P)为价值,即 ...

  8. HDU 2955 Robberies(01背包)

    Robberies Problem Description The aspiring Roy the Robber has seen a lot of American movies, and kno ...

  9. HDOJ.2955 Robberies (01背包+概率问题)

    Robberies 算法学习-–动态规划初探 题意分析 有一个小偷去抢劫银行,给出来银行的个数n,和一个概率p为能够逃跑的临界概率,接下来有n行分别是这个银行所有拥有的钱数mi和抢劫后被抓的概率pi, ...

  10. HDU2955 Robberies[01背包]

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

随机推荐

  1. Altium Designer的一些功能

    一 Snippets:将原理图或PCB的部分模块电路保存以便于以后重用.https://wenku.baidu.com/view/412a0dbcf121dd36a32d8217.html 二 设备制 ...

  2. Mysql读写分离操作之mysql-proxy

    常见的读写方式 基于程序代码内部实现 在代码中根据select.insert进行选择分类:这类方法也是生产常用的,效率最高,但是对开发人员比较麻烦.架构不能灵活调整 基于中间件的读写分离: mysql ...

  3. 使用gitblit 在windows平台搭建git服务器

    1.下载jdk,安装并且配置好环境变量 2.下载gitblit 直接解压无需安装 3.配置gitblit 1.修改gitblit安装目录下的data文件下的gitblit.properties.将in ...

  4. AJPFX总结Java 程序初始化过程

    觉得Core Java在Java 初始化过程的总体顺序没有讲,只是说了构造器时的顺序,作者似乎认为路径很多,列出来比较混乱.我觉得还是要搞清楚它的过程比较好.所以现在结合我的学习经验写出具体过程: 过 ...

  5. 关于setTimeout和Promise执行顺序问题

    先看一段代码 console.log('打印'+1); setTimeout(function(){ console.log('打印'+2); }) new Promise(function(reso ...

  6. Android模板制作

    本文详细介绍模板相关的知识和如何制作Android模版及使用,便于较少不必要的重复性工作.比如我在工作中如果要创建一个新的模块,就不要需要创建MVP相关的几个类:Model.View.Presente ...

  7. express搭建平台

    1.nodeJs的安装(npm的安装) nodejs官方下载地址:https://nodejs.org 2.express的安装( $ npm install -g express #全局安装expr ...

  8. Javaweb学习笔记9—过滤器

      今天来讲javaweb的第9阶段学习.   过滤器,我在本次的思维导图中将过滤器和监听器放在一起总结了,监听器比较简单就不单独写了.   老规矩,首先先用一张思维导图来展现今天的博客内容.     ...

  9. 深入Docker 存储驱动 (转)

    参考: http://static.dockerone.com/ppt/filedriver.html#28

  10. iptables 防火墙

    运行源地址为192.168.10.10-192.168.10.50 这个网段的机器访问本机的20-25还有80.443.6379端口进来的流量 iptables -A INPUT -p tcp -m ...