Outline

  • Auto-Encoder

  • Variational Auto-Encoders

Auto-Encoder

创建编解码器

import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from PIL import Image
from matplotlib import pyplot as plt tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.') def save_images(imgs, name):
new_im = Image.new('L', (280, 280)) index = 0
for i in range(0, 280, 28):
for j in range(0, 280, 28):
im = imgs[index]
im = Image.fromarray(im, mode='L')
new_im.paste(im, (i, j))
index += 1 new_im.save(name) h_dim = 20 # 784降维20维
batchsz = 512
lr = 1e-3 (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(
np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz) print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape) class AE(keras.Model):
def __init__(self):
super(AE, self).__init__() # Encoders
self.encoder = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(h_dim)
]) # Decoders
self.decoder = Sequential([
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(784)
]) def call(self, inputs, training=None):
# [b,784] ==> [b,19]
h = self.encoder(inputs) # [b,10] ==> [b,784]
x_hat = self.decoder(h) return x_hat model = AE()
model.build(input_shape=(None, 784)) # tensorflow尽量用元组
model.summary()
(60000, 28, 28) (60000,)
(10000, 28, 28) (10000,)
Model: "ae"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
sequential (Sequential) multiple 236436
_________________________________________________________________
sequential_1 (Sequential) multiple 237200
=================================================================
Total params: 473,636
Trainable params: 473,636
Non-trainable params: 0
_________________________________________________________________

训练

optimizer = tf.optimizers.Adam(lr=lr)

for epoch in range(10):

    for step, x in enumerate(train_db):

        # [b,28,28]==>[b,784]
x = tf.reshape(x, [-1, 784]) with tf.GradientTape() as tape:
x_rec_logits = model(x) rec_loss = tf.losses.binary_crossentropy(x,
x_rec_logits,
from_logits=True)
rec_loss = tf.reduce_min(rec_loss) grads = tape.gradient(rec_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables)) if step % 100 == 0:
print(epoch, step, float(rec_loss)) # evaluation x = next(iter(test_db))
logits = model(tf.reshape(x, [-1, 784]))
x_hat = tf.sigmoid(logits)
# [b,784]==>[b,28,28]
x_hat = tf.reshape(x_hat, [-1, 28, 28]) # [b,28,28] ==> [2b,28,28]
x_concat = tf.concat([x, x_hat], axis=0)
# x_concat = x # 原始图片
x_concat = x_hat
x_concat = x_concat.numpy() * 255.
x_concat = x_concat.astype(np.uint8) # 保存为整型
if not os.path.exists('ae_images'):
os.mkdir('ae_images')
save_images(x_concat, 'ae_images/rec_epoch_%d.png' % epoch)
0 0 0.09717604517936707
0 100 0.12493347376585007
1 0 0.09747321903705597
1 100 0.12291513383388519
2 0 0.10048121958971024
2 100 0.12292417883872986
3 0 0.10093794018030167
3 100 0.12260882556438446
4 0 0.10006923228502274
4 100 0.12275046110153198
5 0 0.0993042066693306
5 100 0.12257824838161469
6 0 0.0967678651213646
6 100 0.12443818897008896
7 0 0.0965462476015091
7 100 0.12179268896579742
8 0 0.09197664260864258
8 100 0.12110235542058945
9 0 0.0913471132516861
9 100 0.12342415750026703

Auto-Encoders实战的更多相关文章

  1. [Python] 机器学习库资料汇总

    声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: ...

  2. python数据挖掘领域工具包

    原文:http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Sc ...

  3. Theano3.1-练习之初步介绍

    来自 http://deeplearning.net/tutorial/,虽然比较老了,不过觉得想系统的学习theano,所以需要从python--numpy--theano的顺序学习.这里的资料都很 ...

  4. [resource]Python机器学习库

    reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块: ...

  5. 机器学习——深度学习(Deep Learning)

    Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key W ...

  6. Deep Learning Tutorial - Classifying MNIST digits using Logistic Regression

    Deep Learning Tutorial 由 Montreal大学的LISA实验室所作,基于Theano的深度学习材料.Theano是一个python库,使得写深度模型更容易些,也可以在GPU上训 ...

  7. [转]Python机器学习工具箱

    原文在这里  Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播 ...

  8. 深度学习材料:从感知机到深度网络A Deep Learning Tutorial: From Perceptrons to Deep Networks

    In recent years, there’s been a resurgence in the field of Artificial Intelligence. It’s spread beyo ...

  9. Deep Learning(4)

    四.拓展学习推荐 Deep Learning 经典阅读材料: The monograph or review paper Learning Deep Architectures for AI (Fou ...

  10. 深度学习教程Deep Learning Tutorials

    Deep Learning Tutorials Deep Learning is a new area of Machine Learning research, which has been int ...

随机推荐

  1. 洛谷 P3355 骑士共存问题【最小割】

    同方格取数问题:https://www.cnblogs.com/lokiii/p/8430720.html 记得把障碍点去掉,不连边也不计入sum #include<iostream> # ...

  2. NOIp 2014 寻找道路【图的遍历/最短路】By cellur925

    题目传送门 比较裸的图论,结果自己还是没做出来,我真菜. 我们根据题意,只要把不能通向终点的点求出,然后再分别以这些点为起点,求出它们能到达的点,这些点也不能在路径上. 之后跑一个最短路即可. 注意以 ...

  3. git基本操作(入门)

    下面以一个最简单的开发过程,呈现git最基本的操作命令 1.下载代码(以code命名仓库为例) git clone xxxxx/code.git cd code 2.查看所有分支 git branch ...

  4. BZOJ2159 Crash的文明世界

    Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...

  5. [Usaco2005 Feb]Feed Accounting 饲料计算

    Description Farmer John is trying to figure out when his last shipment of feed arrived. Starting wit ...

  6. _bzoj3223 Tyvj 1729 文艺平衡树【Splay】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3223 裸的,打个标记. #include <cstdio> #include & ...

  7. LoadRunner_11破解教程完整版

    2017.12.17更正 qtm的LR11,如果是win10版本的电脑而且ie浏览器是11以上的请到loadrunner官网下载社区免费版,支持google,firefox,edge,ie11四大浏览 ...

  8. 对比度受限的自适应直方图均衡化(CLAHE)

    直方图均衡化(HE)是一种很常用的直方图类方法,基本思想是通过图像的灰度分布直方图确定一条映射曲线,用来对图像进行灰度变换,以达到提高图像 对比度的目的.该映射曲线其实就是图像的累计分布直方图(CDF ...

  9. 把sed当作命令解释器使用

    [root@sishen ~]# vim script.sed #!/bin/sed -f #交换第一列和第二列 s/\([^,]*\),\([^,]*\),\(.*\).*/\2,\1, \3/g ...

  10. R in action读书笔记(17)第十二章 重抽样与自助法

    12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相 ...