Outline

  • Auto-Encoder

  • Variational Auto-Encoders

Auto-Encoder

创建编解码器

import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from PIL import Image
from matplotlib import pyplot as plt tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.') def save_images(imgs, name):
new_im = Image.new('L', (280, 280)) index = 0
for i in range(0, 280, 28):
for j in range(0, 280, 28):
im = imgs[index]
im = Image.fromarray(im, mode='L')
new_im.paste(im, (i, j))
index += 1 new_im.save(name) h_dim = 20 # 784降维20维
batchsz = 512
lr = 1e-3 (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(
np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz) print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape) class AE(keras.Model):
def __init__(self):
super(AE, self).__init__() # Encoders
self.encoder = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(h_dim)
]) # Decoders
self.decoder = Sequential([
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(784)
]) def call(self, inputs, training=None):
# [b,784] ==> [b,19]
h = self.encoder(inputs) # [b,10] ==> [b,784]
x_hat = self.decoder(h) return x_hat model = AE()
model.build(input_shape=(None, 784)) # tensorflow尽量用元组
model.summary()
(60000, 28, 28) (60000,)
(10000, 28, 28) (10000,)
Model: "ae"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
sequential (Sequential) multiple 236436
_________________________________________________________________
sequential_1 (Sequential) multiple 237200
=================================================================
Total params: 473,636
Trainable params: 473,636
Non-trainable params: 0
_________________________________________________________________

训练

optimizer = tf.optimizers.Adam(lr=lr)

for epoch in range(10):

    for step, x in enumerate(train_db):

        # [b,28,28]==>[b,784]
x = tf.reshape(x, [-1, 784]) with tf.GradientTape() as tape:
x_rec_logits = model(x) rec_loss = tf.losses.binary_crossentropy(x,
x_rec_logits,
from_logits=True)
rec_loss = tf.reduce_min(rec_loss) grads = tape.gradient(rec_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables)) if step % 100 == 0:
print(epoch, step, float(rec_loss)) # evaluation x = next(iter(test_db))
logits = model(tf.reshape(x, [-1, 784]))
x_hat = tf.sigmoid(logits)
# [b,784]==>[b,28,28]
x_hat = tf.reshape(x_hat, [-1, 28, 28]) # [b,28,28] ==> [2b,28,28]
x_concat = tf.concat([x, x_hat], axis=0)
# x_concat = x # 原始图片
x_concat = x_hat
x_concat = x_concat.numpy() * 255.
x_concat = x_concat.astype(np.uint8) # 保存为整型
if not os.path.exists('ae_images'):
os.mkdir('ae_images')
save_images(x_concat, 'ae_images/rec_epoch_%d.png' % epoch)
0 0 0.09717604517936707
0 100 0.12493347376585007
1 0 0.09747321903705597
1 100 0.12291513383388519
2 0 0.10048121958971024
2 100 0.12292417883872986
3 0 0.10093794018030167
3 100 0.12260882556438446
4 0 0.10006923228502274
4 100 0.12275046110153198
5 0 0.0993042066693306
5 100 0.12257824838161469
6 0 0.0967678651213646
6 100 0.12443818897008896
7 0 0.0965462476015091
7 100 0.12179268896579742
8 0 0.09197664260864258
8 100 0.12110235542058945
9 0 0.0913471132516861
9 100 0.12342415750026703

Auto-Encoders实战的更多相关文章

  1. [Python] 机器学习库资料汇总

    声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: ...

  2. python数据挖掘领域工具包

    原文:http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Sc ...

  3. Theano3.1-练习之初步介绍

    来自 http://deeplearning.net/tutorial/,虽然比较老了,不过觉得想系统的学习theano,所以需要从python--numpy--theano的顺序学习.这里的资料都很 ...

  4. [resource]Python机器学习库

    reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块: ...

  5. 机器学习——深度学习(Deep Learning)

    Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key W ...

  6. Deep Learning Tutorial - Classifying MNIST digits using Logistic Regression

    Deep Learning Tutorial 由 Montreal大学的LISA实验室所作,基于Theano的深度学习材料.Theano是一个python库,使得写深度模型更容易些,也可以在GPU上训 ...

  7. [转]Python机器学习工具箱

    原文在这里  Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播 ...

  8. 深度学习材料:从感知机到深度网络A Deep Learning Tutorial: From Perceptrons to Deep Networks

    In recent years, there’s been a resurgence in the field of Artificial Intelligence. It’s spread beyo ...

  9. Deep Learning(4)

    四.拓展学习推荐 Deep Learning 经典阅读材料: The monograph or review paper Learning Deep Architectures for AI (Fou ...

  10. 深度学习教程Deep Learning Tutorials

    Deep Learning Tutorials Deep Learning is a new area of Machine Learning research, which has been int ...

随机推荐

  1. SQL 初级教程学习(二)

    1.SQL 语句从 "Websites" 表中选取头两条记录: SELECT * FROM Websites LIMIT 2; SELECT TOP 50 PERCENT * FR ...

  2. 转如何升级oracle版本?(11.2.0.1至11.2.0.4)

    dbua from 11.2,0.2 to 11.2.0.4 need 2hours 升级结果: 步骤名             日志文件名       状态 升级前操作   PreUpgrade.l ...

  3. 221 Maximal Square 最大正方形

    在一个由0和1组成的二维矩阵内,寻找只包含1的最大正方形,并返回其面积.例如,给出如下矩阵:1 0 1 0 01 0 1 1 11 1 1 1 11 0 0 1 0返回 4. 详见:https://l ...

  4. ambari-server启动WARN qtp-ambari-client-87] ServletHandler: 563 /api/v1/stacks/HDP/versions/2.4/recommendations java.lang.NullPointerException报错解决办法(图文详解)

      问题详情 来源是,我在Ambari集群里,安装Hue. 给Ambari集群里安装可视化分析利器工具Hue步骤(图文详解 所遇到的这个问题. 然后,去ambari-server的log日志,查看,如 ...

  5. AJPFX关于多态中的动态绑定和静态绑定的总结

    在多态中:成员变量和静态方法编译和运行都看左边:成员方法编译看左边,运行看右边,这是为什么:在Java中存在两种绑定方式,一种为静态绑定,又称作早期绑定.另一种就是动态绑定,亦称为后期绑定1.静态绑定 ...

  6. 锐动SDK应用于行车记录仪

    方案架构 手机端直播与录播功能忠实记录旅途中各种突发事件,还原事实真相,与家人和朋友分享沿途美景,一同感受美妙之旅. 强大的视频编辑功能,像编辑图片一样给视频添加各种滤镜,配音,配乐,标题文字等特效. ...

  7. Fragment懒加载预加载

    1. 预加载viewpager.setOffscreenPageLimit(2);,默认是预加载1,可以结合懒加载使用. 如果希望进入viewpager,Fragment只加载一次,再次滑动不需加载( ...

  8. Objective - c Foundation 框架详解2

    Objective - c  Foundation 框架详解2 Collection Agency Cocoa provides a number of collection classes such ...

  9. debian设置英文模式

    Ubuntu太臃肿了,遂换回debian系统.在虚拟机上装debian,发现console下中文不显示. 各种export方法试过,始终无效.废了一个小时终于找到方法了.记录之. debian设置语言 ...

  10. js模块化方案以及前端打包工具

    图片来自知乎