【Luogu】P1593因子和(唯一分解定理,约数和公式)
首先介绍两个定理。
整数唯一分解定理:任意正整数都有且只有一种方式写出素数因子的乘积表达式。
\(A=(p1k1 p2k2 ...... pnkn \)
求这些因子的代码如下
for(int i=;i*i<=a;++i){
if(!(a%i)){
prime[++num]=i;
while(!(a%i)){
a/=i;
sum[num]++;
}
}
}
if(a!=){
prime[++num]=a;
sum[num]=;
}
唯一分解定理
约数和公式:对于已经分解的整数A,有A的所有因子和为
\( S= (1+p1+p12+p13+......+p1k1) (1+p2+p22+p23+......+p2k2)........(1+pn+pn2+pn3+......+pnkn) \)
所以局势明朗。用快速幂求出p的k*b次方,然后递归求和。代码如下
long long Sum(long long p,long long n){
if(n==) return ;
if(n&) return (Sum(p,n>>)*(+Pow(p,(n>>)+)))%mod;
return (Sum(p,(n>>)-)*(+Pow(p,(n>>)+))+Pow(p,n>>))%mod;
}
解题代码如下
#include<cstdio>
#include<cctype>
#define mod 9901
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} int prime[];
int sum[];
int num; long long Pow(long long n,long long i){
if(i==) return ;
if(i==) return n%mod;
long long ret=Pow(n,i>>);
if(i&) return (((ret*ret)%mod)*n)%mod;
return (ret*ret)%mod;
} long long Sum(long long p,long long n){
if(n==) return ;
if(n&) return (Sum(p,n>>)*(+Pow(p,(n>>)+)))%mod;
return (Sum(p,(n>>)-)*(+Pow(p,(n>>)+))+Pow(p,n>>))%mod;
} int main(){
long long a=read(),b=read();
for(int i=;i*i<=a;++i){
if(!(a%i)){
prime[++num]=i;
while(!(a%i)){
a/=i;
sum[num]++;
}
}
}
if(a!=){
prime[++num]=a;
sum[num]=;
}
int ans=;
for(int i=;i<=num;++i)
ans=(ans*Sum(prime[i],sum[i]*b)%mod)%mod;
printf("%d",ans);
return ;
}
【Luogu】P1593因子和(唯一分解定理,约数和公式)的更多相关文章
- POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)
Sumdiv Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...
- UVA294DIvisors(唯一分解定理+约数个数)
题目链接 题意:输入两个整数L,U(L <= U <= 1000000000, u - l <= 10000),统计区间[L,U]的整数中哪一个的正约数最多,多个输出最小的那个 本来 ...
- POJ1845Sumdiv(求所有因子和 + 唯一分解定理)
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 17387 Accepted: 4374 Descripti ...
- 2018.09.28 牛客网contest/197/A因子(唯一分解定理)
传送门 比赛的时候由于变量名打错了调了很久啊. 这道题显然是唯一分解定理的应用. 我们令P=a1p1∗a2p2∗...∗akpkP=a_1^{p_1}*a_2^{p_2}*...*a_k^{p_k}P ...
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
- HDU-1215 七夕节 数论 唯一分解定理 求约数之和
题目链接:https://cn.vjudge.net/problem/HDU-1215 题意 中文题,自己去看吧,懒得写:) 思路 \[ Ans=\prod \sum p_i^j \] 唯一分解定理 ...
- hdu 1215 求约数和 唯一分解定理的基本运用
http://acm.hdu.edu.cn/showproblem.php?pid=1215 题意:求解小于n的所有因子和 利用数论的唯一分解定理. 若n = p1^e1 * p2^e2 * ……*p ...
- Divisors (求解组合数因子个数)【唯一分解定理】
Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...
随机推荐
- 关于一个app中数据库的问题
如果是不同名字的数据库,可以有多个数据库操作dao 如果是同样名字的数据库,只能有一个数据库操作dao,创建表的语句可以写在一个oncreate方法里面 例如 public class Address ...
- Windows定时任务管理以及服务管理
1.NSSM.exe https://nssm.cc/ 2.Topshelf 引用地址:https://www.cnblogs.com/guogangj/p/10093102.html#4136330
- 如何计算支撑向量数(SVs)
申明:转载请注明出处. 支持向量机(SVM)是一个成熟的单分类器,常常用于对比实验中.往往需要统计支持向量数量来比较算法优劣,MATLAB有自带的SVM工具箱,用法如下: [train, test] ...
- org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.binding.BindingException: Parameter 'userId' not found. Available parameters are [arg1, arg0, param1, param2]
2018-06-27 16:43:45.552 INFO 16932 --- [nio-8081-exec-1] o.a.c.c.C.[Tomcat].[localhost].[/] : ...
- MVC视图特性
在主界面的视图中可以使用viewdata,引用主界面的分布视图界面也可以调用主界面的分部视图,但是分部视图不可以定义viewdata并使用 例子如下: // // GET: /Home/ public ...
- 搭建一个入门springboot工程
springboot工程搭建(入门案例) 第一步:创建maven工程 第二步:设置项目信息 第三步:默认项目名称,不用改动(第二步已填写) 第三步:在pom.xml中导入依赖 SpringBoot要 ...
- Python 中函数(Function)的用法
函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.Python提供了许多内建函数,比如print().input(),也可以自己创建函数, ...
- ThinPHP5.0 目录结构
官网文档 https://www.kancloud.cn/manual/thinkphp5/118008 project 应用部署目录├─application 应用目录(可设置)│ ├─commo ...
- [BZOJ3631]:[JLOI2014]松鼠的新家(LCA+树上差分)
题目传送门 题目描述: 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀 ...
- 用事件队列解决GUI的操作顺序问题(Qt中处理方法)
GUI操作顺序问题引发异常: 有时候我们使用写GUI程序的时候会遇到这样的问题:比如在程序中,建立了一个列表的GUI.这个列表是随着时间不断更新的,而且操作也会读取这个列表GUI的内容. 如果这个程序 ...