【转载】Socket通讯原理以及TCP、IP三次握手机制分析
要写网络程序就必须用Socket,这是程序员都知道的。而且,面试的时候,我们也会问对方会不会Socket编程?一般来说,很多人都会说,Socket编程基本就是listen,accept以及send,write等几个基本的操作。是的,就跟常见的文件操作一样,只要写过就一定知道。
对于网络编程,我们也言必称TCP/IP,似乎其它网络协议已经不存在了。对于TCP/IP,我们还知道TCP和UDP,前者可以保证数据的正确和可靠性,后者则允许数据丢失。最后,我们还知道,在建立连接前,必须知道对方的IP地址和端口号。除此,普通的程序员就不会知道太多了,很多时候这些知识已经够用了。最多,写服务程序的时候,会使用多线程来处理并发访问。
我们还知道如下几个事实:
1。一个指定的端口号不能被多个程序共用。比如,如果IIS占用了80端口,那么Apache就不能也用80端口了。
2。很多防火墙只允许特定目标端口的数据包通过。
3。服务程序在listen某个端口并accept某个连接请求后,会生成一个新的socket来对该请求进行处理。
于是,一个困惑了我很久的问题就产生了。如果一个socket创建后并与80端口绑定后,是否就意味着该socket占用了80端口呢?如果是这样的,那么当其accept一个请求后,生成的新的socket到底使用的是什么端口呢(我一直以为系统会默认给其分配一个空闲的端口号)?如果是一个空闲的端口,那一定不是80端口了,于是以后的TCP数据包的目标端口就不是80了--防火墙一定会组织其通过的!实际上,我们可以看到,防火墙并没有阻止这样的连接,而且这是最常见的连接请求和处理方式。我的不解就是,为什么防火墙没有阻止这样的连接?它是如何判定那条连接是因为connet80端口而生成的?是不是TCP数据包里有什么特别的标志?或者防火墙记住了什么东西?
后来,我又仔细研读了TCP/IP的协议栈的原理,对很多概念有了更深刻的认识。比如,在TCP和UDP同属于传输层,共同架设在IP层(网络层)之上。而IP层主要负责的是在节点之间(End to End)的数据包传送,这里的节点是一台网络设备,比如计算机。因为IP层只负责把数据送到节点,而不能区分上面的不同应用,所以TCP和UDP协议在其基础上加入了端口的信息,端口于是标识的是一个节点上的一个应用。除了增加端口信息,UPD协议基本就没有对IP层的数据进行任何的处理了。而TCP协议还加入了更加复杂的传输控制,比如滑动的数据发送窗口(Slice Window),以及接收确认和重发机制,以达到数据的可靠传送。不管应用层看到的是怎样一个稳定的TCP数据流,下面传送的都是一个个的IP数据包,需要由TCP协议来进行数据重组。
所以,我有理由怀疑,防火墙并没有足够的信息判断TCP数据包的更多信息,除了IP地址和端口号。而且,我们也看到,所谓的端口,是为了区分不同的应用的,以在不同的IP包来到的时候能够正确转发。
TCP/IP只是一个协议栈,就像操作系统的运行机制一样,必须要具体实现,同时还要提供对外的操作接口。就像操作系统会提供标准的编程接口,比如Win32编程接口一样,TCP/IP也必须对外提供编程接口,这就是Socket编程接口--原来是这么回事啊!
在Socket编程接口里,设计者提出了一个很重要的概念,那就是socket。这个socket跟文件句柄很相似,实际上在BSD系统里就是跟文件句柄一样存放在一样的进程句柄表里。这个socket其实是一个序号,表示其在句柄表中的位置。这一点,我们已经见过很多了,比如文件句柄,窗口句柄等等。这些句柄,其实是代表了系统中的某些特定的对象,用于在各种函数中作为参数传入,以对特定的对象进行操作--这其实是C语言的问题,在C++语言里,这个句柄其实就是this指针,实际就是对象指针啦。
现在我们知道,socket跟TCP/IP并没有必然的联系。Socket编程接口在设计的时候,就希望也能适应其他的网络协议。所以,socket的出现只是可以更方便的使用TCP/IP协议栈而已,其对TCP/IP进行了抽象,形成了几个最基本的函数接口。比如create,listen,accept,connect,read和write等等。
现在我们明白,如果一个程序创建了一个socket,并让其监听80端口,其实是向TCP/IP协议栈声明了其对80端口的占有。以后,所有目标是80端口的TCP数据包都会转发给该程序(这里的程序,因为使用的是Socket编程接口,所以首先由Socket层来处理)。所谓accept函数,其实抽象的是TCP的连接建立过程。accept函数返回的新socket其实指代的是本次创建的连接,而一个连接是包括两部分信息的,一个是源IP和源端口,另一个是宿IP和宿端口。所以,accept可以产生多个不同的socket,而这些socket里包含的宿IP和宿端口是不变的,变化的只是源IP和源端口。这样的话,这些socket宿端口就可以都是80,而Socket层还是能根据源/宿对来准确地分辨出IP包和socket的归属关系,从而完成对TCP/IP协议的操作封装!而同时,放火墙的对IP包的处理规则也是清晰明了,不存在前面设想的种种复杂的情形。
明白socket只是对TCP/IP协议栈操作的抽象,而不是简单的映射关系,这很重要!
1、TCP连接
手机能够使用联网功能是因为手机底层实现了TCP/IP协议,可以使手机终端通过无线网络建立TCP连接。TCP协议可以对上层网络提供接口,使上层网络数据的传输建立在“无差别”的网络之上。
建立起一个TCP连接需要经过“三次握手”:
第一次握手:客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;
第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手。
握手过程中传送的包里不包含数据,三次握手完毕后,客户端与服务器才正式开始传送数据。理想状态下,TCP连接一旦建立,在通信双方中的任何一方主动关闭连接之前,TCP 连接都将被一直保持下去。断开连接时服务器和客户端均可以主动发起断开TCP连接的请求,断开过程需要经过“四次握手”(过程就不细写了,就是服务器和客户端交互,最终确定断开)
2、HTTP连接
HTTP协议即超文本传送协议(Hypertext Transfer Protocol ),是Web联网的基础,也是手机联网常用的协议之一,HTTP协议是建立在TCP协议之上的一种应用。
HTTP连接最显著的特点是客户端发送的每次请求都需要服务器回送响应,在请求结束后,会主动释放连接。从建立连接到关闭连接的过程称为“一次连接”。
1)在HTTP 1.0中,客户端的每次请求都要求建立一次单独的连接,在处理完本次请求后,就自动释放连接。
2)在HTTP 1.1中则可以在一次连接中处理多个请求,并且多个请求可以重叠进行,不需要等待一个请求结束后再发送下一个请求。
由于HTTP在每次请求结束后都会主动释放连接,因此HTTP连接是一种“短连接”,要保持客户端程序的在线状态,需要不断地向服务器发起连接请求。通常的做法是即时不需要获得任何数据,客户端也保持每隔一段固定的时间向服务器发送一次“保持连接”的请求,服务器在收到该请求后对客户端进行回复,表明知道客户端“在线”。若服务器长时间无法收到客户端的请求,则认为客户端“下线”,若客户端长时间无法收到服务器的回复,则认为网络已经断开。
3、SOCKET原理
3.1套接字(socket)概念
套接字(socket)是通信的基石,是支持TCP/IP协议的网络通信的基本操作单元。它是网络通信过程中端点的抽象表示,包含进行网络通信必须的五种信息:连接使用的协议,本地主机的IP地址,本地进程的协议端口,远地主机的IP地址,远地进程的协议端口。
应用层通过传输层进行数据通信时,TCP会遇到同时为多个应用程序进程提供并发服务的问题。多个TCP连接或多个应用程序进程可能需要通过同一个 TCP协议端口传输数据。为了区别不同的应用程序进程和连接,许多计算机操作系统为应用程序与TCP/IP协议交互提供了套接字(Socket)接口。应用层可以和传输层通过Socket接口,区分来自不同应用程序进程或网络连接的通信,实现数据传输的并发服务
【转自】http://blog.chinaunix.net/uid-21795529-id-3031850.html
【转载】Socket通讯原理以及TCP、IP三次握手机制分析的更多相关文章
- 【HTTP原理】TCP/IP三次握手和四次挥手
HTTP连接 HTTP协议即超文本传送协议(Hypertext Transfer Protocol),是web联网的基础,也是手机联网常用的协议之一,http协议是建立在TCP协议之上的一种应用. H ...
- 在深谈TCP/IP三步握手&四步挥手原理及衍生问题—长文解剖IP
如果对网络工程基础不牢,建议通读<细说OSI七层协议模型及OSI参考模型中的数据封装过程?> 下面就是TCP/IP(Transmission Control Protoco/Interne ...
- TCP/IP 三次握手,四次断开
TCP/IP 三次握手,四次断开 一.TCP报文格式 TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷 本. 下面是TCP报文格式图: 图 ...
- 31.TCP/IP 三次握手与四次挥手
TCP/IP三次握手 TCP建立连接为什么是三次握手,而不是两次或四次? TCP,名为传输控制协议,是一种可靠的传输层协议,IP协议号为6. 顺便说一句,原则上任何数据传输都无法确保绝对可靠,三次握手 ...
- WireShark抓包分析以及对TCP/IP三次握手与四次挥手的分析
WireShark抓包分析TCP/IP三次握手与四次挥手 Wireshark介绍: Wireshark(前称Ethereal)是一个网络封包分析软件.功能十分强大,是一个可以在多个操作系统平台上的开源 ...
- 使用tcpdump探测TCP/IP三次握手
读计算机应该就同说过TCP/IP三次握手,但是都没有去验证过,今天心血来潮,去验证了一下,于是乎写下了这篇博客,可能写的可能有问题,还请多多指教 包括我学习,还有从很多资料来看资料,第三次握手,应该会 ...
- TCP/IP三次握手与四次挥手的正确姿势
0.史上最容易理解的:TCP三次握手,四次挥手 https://cloud.tencent.com/developer/news/257281 A 理解TCP/IP三次握手与四次挥手的正确姿势http ...
- 需要知道的TCP/IP三次握手
TCP/IP三次握手是TCP协议中比较重要的一个知识点,但是在很多博客中看到的三次握手的过程图很多都不是很正确.我在google找到了一篇写的非常不错的介绍TCP/IP技术文章期中就有三次握手的讲解, ...
- TCP/IP 三次握手
网络连接状态 网络连接状态(11种)非常重要这里既包含三次握手中的也包括四次断开中的,所以要熟悉. LISTEN 被动打开,首先服务器需要打开一个socket进行监听,监听来自远方TCP端口的连接请求 ...
随机推荐
- PAT Basic 1066
1066 图像过滤 图像过滤是把图像中不重要的像素都染成背景色,使得重要部分被凸显出来.现给定一幅黑白图像,要求你将灰度值位于某指定区间内的所有像素颜色都用一种指定的颜色替换. 输入格式: 输入在第一 ...
- 洛谷P3961 图的遍历
题目来源 做这道题的方法不少. 在这里我只提一种 就是大法师. 可以采用反向建边,从最大的点开始dfs 我们考虑每次从所剩点中最大的一个点出发,我们暂且称它为i,而凡是i这个点所能到达的点,可以到达的 ...
- sql server 2008启动时:已成功与服务器建立连接,但是在登录过程中发生错误。(provider:命名管道提供程序,error:0-管道的另一端上无任何进程。)(Microsoft SQL Server,错误:233) 然后再连接:错误:18456
问题:sql server 2008启动时:已成功与服务器建立连接,但是在登录过程中发生错误.(provider:命名管道提供程序,error:0-管道的另一端上无任何进程.)(Microsoft S ...
- 五、docker配置镜像加速器之阿里云
1 配置docker加速器 实在忍受不了pull的速度--------- 访问网址: https://dev.aliyun.com/search.html 点击管理中心: 根据操作稳定配置:
- CentOS7搭建Maven的Nexus私服仓库
1.下载nexus 打开一下链接: https://www.sonatype.com/nexus-repository-oss 下载安装包. 2.解压安装包 tar zxvf nexus-3.9.0- ...
- 请编写一个方法,返回某集合的所有非空子集。 给定一个int数组A和数组的大小int n,请返回A的所有非空子集。保证A的元素个数小于等于20,且元素互异。各子集内部从大到小排序,子集之间字典逆序排序,见样例。
题解:观察测试样例,会发现每个子集的选择规律与二进制((2^n) - 1)到 1 的顺序生成的规律是一致的,样例中n=3,2^n-1=7,用二进制表示为111,其中每一位的1表示数组中的三个数都选择. ...
- [android开发篇][android studio 和elipse都需要的流程 android sdk的安装
第三步.下载并安装AndroidSDK 前面两步,我们已经配置了JDK变量环境,并安装好了Eclipse,通过这两步之后Java的开发环境就准备好了,如果我们只是开发普通的JAVA应用程序的话,那么到 ...
- UOJ 274 【清华集训2016】温暖会指引我们前行 ——Link-Cut Tree
魔法森林高清重置, 只需要维护关于t的最大生成树,然后链上边权求和即可. 直接上LCT 调了将近2h 吃枣药丸 #include <cstdio> #include <cstring ...
- [BZOJ2733] [HNOI2012]永无乡(并查集 + 线段树合并)
传送门 一看到第k大就肯定要想到什么权值线段树,主席树,平衡树之类的 然后就简单了 用并查集判断连通,每个节点建立一颗权值线段树,连通的时候直接合并即可 查询时再二分递归地查找 时间复杂度好像不是很稳 ...
- P2016 战略游戏 (树形DP)
题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...