[HNOI2011]XOR与路径
https://zybuluo.com/mdeditor#1094266
标签(空格分隔): 高斯消元 期望
题面
从 1 号节点开始,以相等的概率,随机选择与当前节点相关联的某条边,并沿这条边走到下一个节点,重复这个过程,直到走到 N 号节点为止,便得到一条从 1 号节点到 N 号节点的路径。显然得到每条这样的路径的概率是不同的并且每条这样的路径的“XOR 和”也不一样。现在请你求出该算法得到的路径的“XOR 和”的期望值。
解析
这和[HNOI2013]游走好像啊。点概率和边概率的公式一模一样。于是没怎么动脑子就切了。
但我们发现XOR和的期望值不太好处理,因为期望是不能异或的。
根据异或的套路,我们应该分位计算。
在分位的情况下,有公式(\(E\)是边的意思)
\(P[u]=\sum\frac{P[v]}{in[u]}[E(u,v)=0]+\sum\frac{1-P[v]}{in[u]}[E(u,v)=1](v\in u的邻点)\)
于是我们就可以get一个叫\(1\bigotimes x=1-x(x为实数)\)的新姿势。
这显然不能DP,于是便想想高斯消元,化化式子。
默默移项\(P[u]+\sum\frac{P[v]}{in[u]}[E(u,v)=1]-\sum\frac{P[v]}{in[u]}[E(u,v)=0]=\sum\frac{1}{in[u]}[E(u,v)=1]\)
接下来就只要注意自环问题了。
Update:记得提醒我写篇期望总结。
// luogu-judger-enable-o2
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=200;
int h[N*N<<1],cnt,in[N],n,m;
double dp[N][N],x[N],ans=0;
struct Edge
{
int to,next;ll w;
}e[N*N<<1];
il void add(re int u,re int v,re int w)
{
e[++cnt]=(Edge){v,h[u],w};h[u]=cnt;
}
il int gi()
{
re int x=0,t=1;
re char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void Gauss()
{
fp(i,1,n)
fp(j,i+1,n)
fq(k,n+1,1) dp[j][k]-=dp[i][k]*dp[j][i]/dp[i][i];
fq(i,n,1)
{
x[i]=dp[i][n+1];
fq(j,n,i+1) x[i]-=dp[i][j]*x[j];
x[i]/=dp[i][i];
}
}
int main()
{
memset(h,-1,sizeof(h));
n=gi();m=gi();
fp(i,1,m)
{
re int u=gi(),v=gi(),w=gi();
add(u,v,w);++in[v];
if(u^v) add(v,u,w),++in[u];
}
fp(ysn,0,30)
{
memset(dp,0,sizeof(dp));
fp(u,1,n-1)
{
dp[u][u]=1;
for(re int i=h[u];i+1;i=e[i].next)
{
re int v=e[i].to,w=e[i].w&(1<<ysn);
if(w) dp[u][v]+=1.0/in[u],dp[u][n+1]+=1.0/in[u];
else dp[u][v]-=1.0/in[u];
}
}
dp[n][n]=1;
Gauss();
ans+=x[1]*(1<<ysn);
}
printf("%.3lf\n",ans);
return 0;
}
[HNOI2011]XOR与路径的更多相关文章
- 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 682 Solved: 384[Submit][Stat ...
- BZOJ2337: [HNOI2011]XOR和路径
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...
- BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- [HNOI2011]XOR和路径 && [HNOI2013]游走
[HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...
- 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1170 Solved: 683 Description ...
- 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元
[BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...
- [Wc2011] Xor 和 [HNOI2011]XOR和路径
Xor F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Prob ...
- LG3211 [HNOI2011]XOR和路径
题意 题目描述 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的"XOR 和"最大.该 ...
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
随机推荐
- Redis系列(九)--几道面试题
这里只是一点面试题,想了解更多,可以查看本人的Redis系列:https://www.cnblogs.com/huigelaile/category/1461895.html 1.Redis和Memc ...
- Bullet:关于ORACLE中的HASH JOIN的参数变化
Oracle在7.3引入了hash join. 但是在Oracle 10g及其以后的Oracle数据库版本中,优化器,实际是CBO,也是因为HASH JOIN仅适用于CBO,在解析目标SQL时是否考虑 ...
- [USACO] 奶牛混合起来 Mixed Up Cows
题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a unique serial number S_i (1 <= S_i & ...
- MyBatis 中传递多个参数的 4 种方式
方式 1 :封装成对象入参 #{对应实体类的属性} //UserMapper.java 接口 /** * 多条件查询:根据用户名称(模糊查询)和用户角色查询用户列表(参数:对象入参) * @para ...
- 类中的__call__()
class A: def __call__(self, *args, **kwargs): print('执行了call方法') def call(self): print('执行call方法') c ...
- linux 简单实用小操作
mysql改密码 通过root以后,(root密码忘记就没法了) alter user username@'%' identified by 'password' 端口被占用 sudo fuser - ...
- POJ 2142 TheBalance 模线性方程求解
题目大意: 就是将两种砝码左右摆放,能够在物品放置在天平上时保持平衡 很容易得到 ax + by = t的模线性方程 按题目要求,希望首先满足 |x| + |y| 最小 , 如果有多种情况,再满足所有 ...
- Codeforces 158B (数学)
B. Mushroom Scientists time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- multiple instance of mac app
一般情况下,mac系统上的应用程序只能启动一个实例,现在做项目,需要mac上同时启动多个实例,如何做呢,下面就说明完成这个功能的方法: 主要原理:利用 open -n Applications/XXX ...
- CentOS 安装Oracle 11g R2
CentOS 安装Oracle 11g R2 学习了-/ https://www.osyunwei.com/archives/5445.html