【题目链接】

点击打开链接

【算法】

用f[i][j]表示走到(i,j)这个位置有多少种方案,因为走到(i,j)这个位置,上一步一定在它左上角的矩形中,所以,

f(i,j) = sigma( f(x,y) ) ( (x,y)在左上角的矩形中)

我们尝试将它画出来,发现是斜着的杨辉三角

然后,通过找规律,我们发现 : f(n,m) = C(n+m-4,n-2)

求C函数的值,这里有一种方法 :

C(n,r) mod P = (n! / (n - r)! / r!) mod P

= (n!) mod P * inv( (n - r)! ) mod P * inv( r! ) mod P( 其中,inv表示乘法逆元 )

考虑预处理阶乘和阶乘逆元

阶乘很容易求,那么,阶乘逆元怎么求呢?

这里有一种线性求阶乘逆元的方法 ( 如果我们要求 inv( n! ) ) :

inv(n ! ) = inv( (n - 1)! n )

= inv( (n - 1)! ) inv( n )

所以 inv( (n - 1)! ) = inv( n ! ) * inv( inv( n ) )

= inv( n! ) * n

有了这个式子,我们便可以在线性时间内求出所有的阶乘逆元

这一题,我们只要预处理阶乘和阶乘逆元,然后,O(1)回答询问,即可

【代码】

#include<bits/stdc++.h>
using namespace std;
#define MAXN 200010
const long long P = ; long long n,m;
long long fac[MAXN],inv[MAXN]; inline long long power(long long a,long long n)
{
long long ans = ,b = a;
while (n > )
{
if (n & ) ans = (ans * b) % P;
b = (b * b) % P;
n >>= ;
}
return ans;
}
inline void init()
{
int i;
fac[] = ;
for (i = ; i < MAXN; i++) fac[i] = fac[i-] * i % P;
inv[MAXN-] = power(fac[MAXN-],P-);
for (i = MAXN - ; i >= ; i--) inv[i] = inv[i+] * (i + ) % P;
}
inline long long C(long long n,long long m)
{
if (!m) return ;
else if (n == m) return ;
else return fac[n] * inv[n-m] % P * inv[m] % P;
} int main() { init();
while (scanf("%d%d",&n,&m) != EOF)
{
printf("%lld\n",C(n+m-,n-));
} return ; } /*
f( n! ) = f( (n-1)! n) = f( (n - 1)! ) f(n)
f( n! ) * f( f(n) ) = f( (n - 1)! )
f( n! ) * n = f( (n - 1)! )
f( n! ) = f ( (n + 1)! ) * (n + 1)
*/

【HDU 5698】 瞬间移动的更多相关文章

  1. HDU 5698 瞬间移动 数学

    瞬间移动 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5698 Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次 ...

  2. HDU 5698 瞬间移动

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  3. HDU 5698——瞬间移动——————【逆元求组合数】

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  4. hdu 5698 瞬间移动(排列组合)

    这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...

  5. 【HDU 5698】瞬间移动(组合数,逆元)

    x和y分开考虑,在(1,1)到(n,m)之间可以选择走i步.就需要选i步对应的行C(n-2,i)及i步对应的列C(m-2,i).相乘起来. 假设$m\leq n$$$\sum_{i=1}^{m-2} ...

  6. HDU 5698 大组合数取模(逆元)

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  7. hdu 5698(杨辉三角的性质+逆元)

    ---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...

  8. 数论基础之组合数&计数问题

    一.组合数:问题引入:现在有 n 个球,取其中的 k 个球,问一共有多少种方式?答案: 公式直观解释:我们考虑有顺序地取出 k 个球:第一次有 n 种选择,第二次有 n-1 种选择,...,第 k 次 ...

  9. hdu 1269 迷宫城堡 强连通分量

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

随机推荐

  1. Linux命令学习(5):more和less

    引子 平常工作中经常需要查看很大的文本文件,如果用vi打开的话会非常慢,所以平常都用less,但是并没有很系统地学习过less的用法,今天总结一下less和more的用法. 经过学习我发现less比m ...

  2. Linux 搭建 squid 代理服务器 三种模式

    CentOS 6.7 squid 代理服务器 一般有两张或以上网卡,一张链接公网,访问外网资源,一张位于局域网. 代理服务器可以提供文件缓存.复制和地址过滤等服务,充分利用有限的出口带宽,加快内部主机 ...

  3. LLVM 概览

    下面是 LLVM 首页对 LLVM 介绍的中文翻译. LLVM 项目是一系列模块化.可重用和工具链技术的集合.不必在意它的名称,LLVM 和之前的虚拟机基本没什么关系了,然而也确实提供了对构建这些虚拟 ...

  4. Vue页面骨架屏(二)

    实现思路 参考原文中在构建时使用 Vue 预渲染骨架屏一节介绍的思路,我将骨架屏也看成路由组件,在构建时使用 Vue 预渲染功能,将骨架屏组件的渲染结果 HTML 片段插入 HTML 页面模版的挂载点 ...

  5. Microsoft Azure 资料整理

    鉴于Microsoft Azure的技术迭代更新相当快,所以推荐大家还是以官方文档为准. 以Global Azure 的为主,Mooncake版本自行删减 首先推荐Azure for MSDN htt ...

  6. Git--使用须知123

    详细的篇幅以后补充 安装篇: 设置篇: 由于我们大多数是windows程序员,那么,在使用git的过程前需要做一些设置项. 1.换行符自动转换. 查看:git config --global --li ...

  7. UVA 10652 凸包问题

    #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> # ...

  8. BBS+Blog项目代码

    项目目录结构: cnblog/ |-- blog/(APP) |-- migrations(其中文件略) |-- templatetags/ |-- my_tags.py |-- utils/ |-- ...

  9. es6常用语法和特性

    简介 首先,在学习之前推荐使用在线转码器 Traceur 来测试 Demo,避免 babel 下的繁琐配置,从而产生畏难情绪. let 命令 在 ES6 之前,JS 只能使用 var 声明变量,或者省 ...

  10. 莫比乌斯反演套路一--令t=pd--BZOJ2820: YY的GCD

    t<=10000组询问:有多少x,y,满足$x\epsilon [1,n],y\epsilon [1,m],(x,y)为质数$.n,m<=1e7. 首先式子列出来,f(i)--1<= ...