【HDU 5698】 瞬间移动
【题目链接】
【算法】
用f[i][j]表示走到(i,j)这个位置有多少种方案,因为走到(i,j)这个位置,上一步一定在它左上角的矩形中,所以,
f(i,j) = sigma( f(x,y) ) ( (x,y)在左上角的矩形中)
我们尝试将它画出来,发现是斜着的杨辉三角
然后,通过找规律,我们发现 : f(n,m) = C(n+m-4,n-2)
求C函数的值,这里有一种方法 :
C(n,r) mod P = (n! / (n - r)! / r!) mod P
= (n!) mod P * inv( (n - r)! ) mod P * inv( r! ) mod P( 其中,inv表示乘法逆元 )
考虑预处理阶乘和阶乘逆元
阶乘很容易求,那么,阶乘逆元怎么求呢?
这里有一种线性求阶乘逆元的方法 ( 如果我们要求 inv( n! ) ) :
inv(n ! ) = inv( (n - 1)! n )
= inv( (n - 1)! ) inv( n )
所以 inv( (n - 1)! ) = inv( n ! ) * inv( inv( n ) )
= inv( n! ) * n
有了这个式子,我们便可以在线性时间内求出所有的阶乘逆元
这一题,我们只要预处理阶乘和阶乘逆元,然后,O(1)回答询问,即可
【代码】
#include<bits/stdc++.h>
using namespace std;
#define MAXN 200010
const long long P = ; long long n,m;
long long fac[MAXN],inv[MAXN]; inline long long power(long long a,long long n)
{
long long ans = ,b = a;
while (n > )
{
if (n & ) ans = (ans * b) % P;
b = (b * b) % P;
n >>= ;
}
return ans;
}
inline void init()
{
int i;
fac[] = ;
for (i = ; i < MAXN; i++) fac[i] = fac[i-] * i % P;
inv[MAXN-] = power(fac[MAXN-],P-);
for (i = MAXN - ; i >= ; i--) inv[i] = inv[i+] * (i + ) % P;
}
inline long long C(long long n,long long m)
{
if (!m) return ;
else if (n == m) return ;
else return fac[n] * inv[n-m] % P * inv[m] % P;
} int main() { init();
while (scanf("%d%d",&n,&m) != EOF)
{
printf("%lld\n",C(n+m-,n-));
} return ; } /*
f( n! ) = f( (n-1)! n) = f( (n - 1)! ) f(n)
f( n! ) * f( f(n) ) = f( (n - 1)! )
f( n! ) * n = f( (n - 1)! )
f( n! ) = f ( (n + 1)! ) * (n + 1)
*/
【HDU 5698】 瞬间移动的更多相关文章
- HDU 5698 瞬间移动 数学
瞬间移动 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5698 Description 有一个无限大的矩形,初始时你在左上角(即第一行第一列),每次 ...
- HDU 5698 瞬间移动
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- HDU 5698——瞬间移动——————【逆元求组合数】
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- hdu 5698 瞬间移动(排列组合)
这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...
- 【HDU 5698】瞬间移动(组合数,逆元)
x和y分开考虑,在(1,1)到(n,m)之间可以选择走i步.就需要选i步对应的行C(n-2,i)及i步对应的列C(m-2,i).相乘起来. 假设$m\leq n$$$\sum_{i=1}^{m-2} ...
- HDU 5698 大组合数取模(逆元)
瞬间移动 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submis ...
- hdu 5698(杨辉三角的性质+逆元)
---恢复内容开始--- 瞬间移动 Accepts: 1018 Submissions: 3620 Time Limit: 4000/2000 MS (Java/Others) Memory Limi ...
- 数论基础之组合数&计数问题
一.组合数:问题引入:现在有 n 个球,取其中的 k 个球,问一共有多少种方式?答案: 公式直观解释:我们考虑有顺序地取出 k 个球:第一次有 n 种选择,第二次有 n-1 种选择,...,第 k 次 ...
- hdu 1269 迷宫城堡 强连通分量
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
随机推荐
- 零基础入门学习Python(18)--函数:灵活即强大
前言 上一节课我们基本介绍Python函数的用法,这一节课我们主要针对函数的参数进行进一步的深入学习. 知识点 形参(parameter)和实参(argument) >>> def ...
- 怎样提高DB2存储过程性能
高性能的SQL过程是数据库开发人员所追求的,我将不断把学到的,或在实际开发中用到的一些提高SQL过程性能的技巧整理出来,温故而知新. 1,在只使用一条语句即可做到时避免使用多条语句 让我们从一个简单的 ...
- linux命令 dig-域名查询工具
博主推荐:更多网络测试相关命令关注 网络测试 收藏linux命令大全 dig命令是常用的域名查询工具,可以用来测试域名系统工作是否正常. 语法 dig(选项)(参数) 选项 @<服务器地址&g ...
- ajax 简单学习
客户端代码function login(type) { $.ajax({ type: "post", url: "logindo.aspx", data: { ...
- Qt 编写应用支持多语言版本--一个GUI应用示例
简介 上一篇博文已经说过如何编写支持多语言的Qt 命令行应用,这一篇说说Qt GUI 应用多语言支持的坑. 本人喜欢用代码来写布局,而不是用 Qt Designer 来设计布局,手写布局比 Qt De ...
- linux配置固定ip
vi /etc/sysconfig/network-scripts/ifcfg-ens33 BOOTPROTO=static ONBOOT=yes 其他默认即可 重启network服务
- 【转】Intellij IDEA 快捷键大全
IntelliJ Idea 常用快捷键列表 Ctrl+Shift + Enter,语句完成“!”,否定完成,输入表达式时按 “!”键Ctrl+E,最近的文件Ctrl+Shift+E,最近更改的文件Sh ...
- [bzoj1895][Pku3580]supermemo_非旋转Treap
supermemo bzoj-1895 Pku-3580 题目大意:给定一个n个数的序列,需支持:区间加,区间翻转,区间平移,单点插入,单点删除,查询区间最小值. 注释:$1\le n\le 6.1\ ...
- Linux系统备份还原工具2(TAR/压缩工具)
相比DD备份还原工具,TAR压缩还原工具更加小巧和灵活,但是不能备份MBR.当然可以通过重新安装GRUB来解决MBR的这一问题.同时,TAR的做法也是官方推荐的. 注意:一个硬盘启动时最新经过MBR( ...
- JSP点击计数器
以下内容引用自http://wiki.jikexueyuan.com/project/jsp/hits-counter.html: 一个点击计数器能得知关于网站某个特定页面的访问量.假设人们第一次登陆 ...