[ SCOI 2005 ] 最大子矩阵
\(\\\)
\(Description\)
给出一个\(N\times M\)的有权矩阵,选出其中\(K\)个互不重叠的子矩阵,使得这\(K\)个子矩阵的权值和最大。
- \(N\in [1,100]\),\(M\in \{1,2\}\),\(K\in [1,10]\)
\(\\\)
\(Solution\)
对于\(M=1\)的情况,矩阵是一个长为\(N\)的数列,问题变为\(K\)段最大子段和,可以参考:最大子段和系列问题。
对于\(M=2\)的情况,沿用上一情况的做法,设状态\(f[i][j][S]\)表示当前处理到第\(i\)行,已经选了\(j\)个子矩阵,本行选则方式为\(S\)的方案数。
分析情况可知,\(S\)有一下五种:
- \(0\):两个位置都不选
- \(1\):只选左边的元素
- \(2\):只选右边的元素
- \(3\):两个都选,放在一个矩形里
- \(4\):两个都选,放在两个矩形里
对五种状态分别讨论转移即可:
- \(0\)状态无需考虑任何限制,直接从上一行的五种状态转移:\(\begin{align}f[i][j][0]=max\{f[i-1][j][0/1/2/3/4]\}\end{align}\)
- \(1\)状态只能从\(1\)状态和\(4\)状态直接继承,其他都得从上一个矩形转移:\(\begin{align}f[i][j][1]=a[i][0]+max\{f[i-1][j-1][0/2/3],f[i-1][j][1/4]\}\end{align}\)
- \(2\)状态只能从\(2\)状态和\(4\)状态直接转移,其他都得从上一个矩形转移:\(\begin{align}f[i][j][2]=a[i][1]+max\{f[i-1][j-1][0/1/3],f[i-1][j][2/4]\}\end{align}\)
- \(3\)状态只能从\(3\)状态直接转移,定义\(s[i]=a[i][0]+a[i][1]\):\(\begin{align}f[i][j][3]=s[i]+max\{f[i-1][j-1][0/1/2/4],f[i-1][j][3]\}\end{align}\)
- \(4\)状态只能直接从\(4\)状态转移,但是可以利用\(1\)状态和\(2\)状态的矩阵:\(\begin{align}f[i][j][4]=s[i]+max\{f[i-1][j-2][0/3],f[i-1][j-1][1/2],f[i-1][j][4]\}\end{align}\)
需要注意的是,初始化只有所有的\(0\)状态为\(0\),其他应该是\(-\infty\),防止一些转移的初始状态不存在。
\(\\\)
\(Code\)
#include<cmath>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 110
#define K 15
#define R register
#define gc getchar
using namespace std;
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
int n,m,k,a[N][2],f[N][K][5];
inline void work1(){
for(R int i=1;i<=n;++i) a[i][0]=rd();
for(R int i=1;i<=n;++i)
for(R int j=1;j<=min(i,k);++j){
f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]);
f[i][j][1]=a[i][0]+max(f[i-1][j][1],max(f[i-1][j-1][0],f[i-1][j-1][1]));
}
printf("%d\n",max(f[n][k][1],f[n][k][0]));
};
inline int mx(int a,int b,int c,int d,int e){
return max(max(a,b),max(max(c,d),e));
}
inline void work2(){
memset(f,0xcf,sizeof(f));
for(R int i=0;i<=n;++i)
for(R int j=0;j<=k;++j) f[i][j][0]=0;
for(R int i=1;i<=n;++i){a[i][0]=rd();a[i][1]=rd();}
for(R int i=1;i<=n;++i)
for(R int j=1;j<=k;++j){
f[i][j][0]=mx(f[i-1][j][0],f[i-1][j][1],f[i-1][j][2],f[i-1][j][3],f[i-1][j][4]);
f[i][j][1]=a[i][0]+mx(f[i-1][j][1],f[i-1][j][4],f[i-1][j-1][0],f[i-1][j-1][2],f[i-1][j-1][3]);
f[i][j][2]=a[i][1]+mx(f[i-1][j][2],f[i-1][j][4],f[i-1][j-1][0],f[i-1][j-1][1],f[i-1][j-1][3]);
f[i][j][3]=a[i][0]+a[i][1]+mx(f[i-1][j][3],f[i-1][j-1][0],f[i-1][j-1][1],f[i-1][j-1][2],f[i-1][j-1][4]);
f[i][j][4]=a[i][0]+a[i][1]+max(f[i-1][j][4],max(f[i-1][j-1][1],f[i-1][j-1][2]));
if(j>=2) f[i][j][4]=max(f[i][j][4],a[i][0]+a[i][1]+max(f[i-1][j-2][0],f[i-1][j-2][3]));
}
printf("%d\n",mx(f[n][k][0],f[n][k][1],f[n][k][2],f[n][k][3],f[n][k][4]));
};
int main(){
n=rd(); m=rd(); k=rd();
(m==1)?work1():work2();
return 0;
}
[ SCOI 2005 ] 最大子矩阵的更多相关文章
- BZOJ 1084 (SCOI 2005) 最大子矩阵
1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3560 Solved: 1779 [Submit][Sta ...
- 【SCOI 2005】 最大子矩阵
[题目链接] 点击打开链接 [算法] 动态规划 我们发现,M只有两种取值,1和2,那么,只需分类讨论即可 当M = 1时,其实这个问题就成了就最大连续子段和的问题,只不过要选K段而已 用f[i][j] ...
- 【BZOJ 1087】【SCOI 2005】互不侵犯King
http://www.lydsy.com/JudgeOnline/problem.php?id=1087 很简单的状压,需要预处理,我两个状态可不可以挨着的预处理出错WA了好几次. 这个位运算预处理好 ...
- [SCOI 2005]王室联邦
Description “余”人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成员来管理.他的国家有n个城市,编号为1..n.一些城市之间有道路相连,任意两个不 ...
- 解题:SCOI 2005 骑士精神
题面 我把这个当做IDA*的模板题的说,说说我个人对IDA*的理解 IDA*是一个DFS,和A*一样,它也有一个乐观的估价函数.这里这个估价函数是用来限制状态的扩展的,如果当前代价加上乐观的估计都无法 ...
- 【题解】互不侵犯 SCOI 2005 BZOJ 1087 插头dp
以前没学插头dp的时候觉得这题贼难,根本不会做,学了才发现原来是一裸题. 用二进制表示以前的格子的状态,0表示没放国王,1表示放了国王. 假设当前位置为(x,y),需要记录的是(x-1,y-1)至(x ...
- 【SCOI 2005】 扫雷
[题目链接] 点击打开链接 [算法] 只要第一行第一个数确定了,后面的数也都确定了 递推两遍即可 [代码] #include<bits/stdc++.h> using namespace ...
- 【SCOI 2005】 繁忙的都市
[题目链接] 点击打开链接 [算法] 题目描述比较繁琐,但细心观察后,发现其实就是用kruskal算法求最小生成树 [代码] #include<bits/stdc++.h> using n ...
- 【SCOI 2005】 互不侵犯
[题目链接] 点击打开链接 [算法] 和HDU2167类似 先搜出一行内符合的状态,然后,f[i][j][k]表示第i行,第j种状态,放了k个,合法的方案,DP即可 [代码] #include< ...
随机推荐
- hdu 5040bfs+优先队列 需要存状态
/* 剪枝:四秒后状态会变得和原来一样,所以四秒后如果再经过这个点肯定不是最优的舍去 易错点:在一个是从.到.这两个点都没有被照到并且不是摄像机,也可能需要等3秒,因为后面的结果可能再这三秒中发生改变 ...
- Codeforces 314B(倍增)
题意:[a,b]表示将字符串a循环写b遍,[c,d]表示把字符串c循环写d遍,给定a,b,c,d,求一个最大的p,使得[[c,d],p]是[a,b]的子序列(注意不是子串,也就是不要求连续).(b,d ...
- spring-boot-starter-actuator(健康监控)配置和使用
在生产环境中,需要实时或定期监控服务的可用性.Spring Boot的actuator(健康监控)功能提供了很多监控所需的接口,可以对应用系统进行配置查看.相关功能统计等. 集成: <depen ...
- Java实现打印功能-AWT Graphics2D
Java实现打印功能 用java实现打印,java.awt中提供了一些打印的API,要实现打印,首先要获得打印对象,然后继承Printable实现接口方法print,以便打印机进行打印,最后用用Gra ...
- JAVA 并发编程-线程池(七)
线程池的作用: 线程池作用就是限制系统中运行线程的数量. 依据系统的环境情况.能够自己主动或手动设置线程数量,达到运行的最佳效果:少了浪费了系统资源,多了造成系统拥挤效率不高.用线程池控制线程数量,其 ...
- 为XCode 6 加入新建类模板
用XCode 6在改动之前用XCode 5 的代码的时候突然间发现 XCode 6已经把新建带有 .xib 类的模板给删去了.而项目的新需求中又要用到新建带有 .xib 的类(用惯了~),全部不得不又 ...
- Behavioral模式之Interpreter模式
1.意图 给定一个语言,定义它的文法的一种表示.并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 2.别名 无 3.动机 假设一种特定类型的问题发生的频率足够高,那么可能就值得将该问题的各种 ...
- 新博客有了,文章转移到 http://www.iosxxx.com/
文章转移到 http://www.iosxxx.com/ ,敬请大家关注
- C++学习之动态数组类的封装
动态数组(Dynamic Array)是指动态分配的.可以根据需求动态增长占用内存的数组.为了实现一个动态数组类的封装,我们需要考虑几个问题:new/delete的使用.内存分配策略.类的四大函数(构 ...
- Cocos2d-html5入门之2048游戏
一.介绍 Cocos2d-JS是Cocos2d-x的Javascript版本,它的前身是Cocos2d-html5.在3.0版本以前叫做Cocos2d-html5,从3.0版本开始叫做Cocos2d- ...