luogu P1775 古代人的难题_NOI导刊2010提高(02)(斐波纳契+数学)
题意
已知x,y为整数,且满足以下两个条件:
1.x,y∈[1…k],且x,y,k∈Z
2.(x^2-xy-y^2)^2=1
给你一个整数k,求一组满足上述条件的x,y并且使得x^2+y^2的值最大。
k<=1018
题解
这题需要推式子
(x2-xy-y2)2=1
(y2+xy-x2)2=1
[(x+y)2-xy-2x2)]2=1
[(x+y)2-(x+y)x-x2)]2=1
然后因为斐波那契数列有一个性质:

把f[n+1]变成f[n]+f[n-1]这个式子就变成了:
f[n]2-f[n]f[n-1]-f[n-1]2=(-1)n-1
发现这两个式子很像
仔细观察我们发现,当x+y=f[n],x=f[n-1]时式子成立
令x1=x+y;y1=x;
(x12-x1y1-y12)2=1即当x1=f[n],y1=f[n-1]时式子成立
我们要求x2+y2的最大值。
就是求f[n]2+f[n-1]2的最大值。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
unsigned long long n,f[];
int now;
int main(){
scanf("%llu",&n);
now=;
f[]=;f[]=;f[]=;
while(n>=f[now]){
now++;
f[now]=f[now-]+f[now-];
}
printf("%llu %llu",f[now-],f[now-]);
return ;
}
luogu P1775 古代人的难题_NOI导刊2010提高(02)(斐波纳契+数学)的更多相关文章
- 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)
P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...
- 洛谷——P1775 古代人的难题_NOI导刊2010提高(02)&& P1936 水晶灯火灵(斐波那契数列)
P1775 古代人的难题_NOI导刊2010提高(02) P1936 水晶灯火灵 斐波那契数列 1.x,y∈[1…k],且x,y,k∈Z 2.(x^2-xy-y^2)^2=1 给你一个整数k,求一组满 ...
- 洛谷P1936 水晶灯火灵 P1775 古代人的难题_NOI导刊2010提高(02)【重题请做P1936】
首先我要说明,此题(古代人的难题)与水晶灯火灵是一模一样的! 古代人的难题 (File IO): input:puzzle.in output:puzzle.out 时间限制: 1000 ms 空间 ...
- 【luogu P1807 最长路_NOI导刊2010提高(07)】 题解
题目链接:https://www.luogu.org/problemnew/show/P1807 求最大路?就是把权值取相反数跑最短路. #include <cstdio> #includ ...
- luogu P1807 最长路_NOI导刊2010提高(07)
题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径. 输入格式 ...
- Luogu P1801 黑匣子_NOI导刊2010提高(06)
P1801 黑匣子_NOI导刊2010提高(06) 题目描述 Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个 ...
- 方程的解_NOI导刊2010提高(01) 组合数
题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...
- 洛谷P1776 宝物筛选_NOI导刊2010提高(02)
P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...
- 洛谷P1771 方程的解_NOI导刊2010提高(01)
题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...
随机推荐
- 微信公众号H5用户授权
其实不是很难,总结起来就是: 1.微信公众号管理后台设置redirect_uri. 2.然后发起一个请求去重定向获取code,然后把获取到code之后重定向的URL放在获取code的URL中 3.获取 ...
- luogu3379 【模板】最近公共祖先(LCA) Tarjan
LCA的Tarjan算法是一个离线算法,复杂度$O(n+q)$. 我们知道Dfs搜索树时会形成一个搜索栈.搜索栈顶节点cur时,对于另外一个节点v,它们的LCA便是v到根节点的路径与搜索栈开始分叉的那 ...
- 【转】获取Android控件的宽和高
我们都知道在onCreate()里面获取控件的高度是0,这是为什么呢?我们来看一下示例: 首先我们自己写一个控件,这个控件非常简单: public class MyImageView extends ...
- android TextView不用ScrollViewe也可以滚动的方法
TextView textview = (TextView) findViewById(R.id.text); /** * * 只有调用了该方法,TextView才能不依赖于ScrollView而实现 ...
- Linux设备驱动模型【转】
本文转载自:http://blog.csdn.net/xiahouzuoxin/article/details/8943863 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+ ...
- code+3月赛 loj6299 白金元首与克劳德斯
千里白金雪满天 烽火江山起狼烟 分手竟兵刃相见 1941.7. 苏联军队出乎意料的反抗力量.前线德军的补给困难 —— 元首 Adolf 望着天空的云层陷入沉思…… 在 xyxyxy-直角坐标平面的天空 ...
- telnet端口问题
今天测试发现telnet 一个端口不通,开始还以为是服务开放这个端口有问题,后来才发现这个端口是udp的.而telnet下层走的tcp协议,自然无法测试那些tcp的端口. 而之前下意识里还总以为都可以 ...
- FSDataInputStream对象 读取数据
- A. Power Consumption Calculation
http://codeforces.com/problemset/problem/10/A 题很简单,就是题意难懂啊... #include <stdio.h> #include < ...
- [Swift通天遁地]九、拔剑吧-(12)创建Preview-Transition图像预览界面
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...