HDU 4920 Matrix multiplication

题目链接

题意:给定两个矩阵,求这两个矩阵相乘mod 3

思路:没什么好的想法,就把0的位置不考虑。结果就过了。然后看了官方题解,上面是用了bitset这个东西,能够用来存大的二进制数,那么对于行列相乘。事实上就几种情况,遇到0都是0了,1 1得1,2 1,1 2得2,2 2得1。所以仅仅要存下行列1和2存不存在分别表示的二进制数。然后取且bitcount一下的个数,就能够计算出对应的数值了

代码:

暴力:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; inline void scanf_(int &num)//无负数
{
char in;
while((in = getchar()) > '9' || in < '0') ;
num = in - '0';
while(in = getchar(),in >= '0' && in <= '9')
num *= 10,num += in - '0';
} const int N = 805; int n; int a[N][N], av[N][N], an[N], b[N][N], bv[N][N], bn[N], c[N][N]; int main() {
while (~scanf("%d", &n)) {
int num;
memset(an, 0, sizeof(an));
memset(bn, 0, sizeof(bn));
memset(c, 0, sizeof(c));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf_(num);
num %= 3;
if (num == 0) continue;
av[j][an[j]] = i;
a[j][an[j]++] = num;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf_(num);
num %= 3;
if (num == 0) continue;
bv[i][bn[i]] = j;
b[i][bn[i]++] = num;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < an[i]; j++) {
for (int k = 0; k < bn[i]; k++) {
int x = av[i][j], y = bv[i][k];
c[x][y] = (c[x][y] + a[i][j] * b[i][k]) % 3;
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n - 1; j++)
printf("%d ", c[i][j]);
printf("%d\n", c[i][n - 1]);
}
}
return 0;
}

bitset:

#include <cstdio>
#include <cstring>
#include <string>
#include <bitset>
using namespace std; const int N = 805;
int n, num;
bitset<800> row[N][2], col[N][2]; int main() {
while (~scanf("%d", &n)) {
for (int i = 0; i < n; i++) {
row[i][0].reset();
row[i][1].reset();
col[i][0].reset();
col[i][1].reset();
for (int j = 0; j < n; j++) {
scanf("%d", &num);
if (num % 3 == 1)
row[i][0].set(j, 1);
if (num % 3 == 2)
row[i][1].set(j, 1);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%d", &num);
if (num % 3 == 1)
col[j][0].set(i, 1);
if (num % 3 == 2)
col[j][1].set(i, 1);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int ans = 0;
ans += (row[i][0]&col[j][0]).count();
ans += 2 * (row[i][1]&col[j][0]).count() + 2 * (row[i][0]&col[j][1]).count();
ans += (row[i][1]&col[j][1]).count();
printf("%d%c", ans % 3, j == n - 1 ? '\n' : ' ');
}
}
}
return 0;
}

HDU 4920 Matrix multiplication(bitset)的更多相关文章

  1. HDU 4920 Matrix multiplication(bitset优化)

    题目链接 Matrix multiplication 求矩阵A和B相乘的结果. 因为答案只要对3取模,所以我们可以通过一些方法来加速计算. 我们对两个矩阵各开两个bitset,分别存储模3余1和模3余 ...

  2. hdu 4920 Matrix multiplication(矩阵乘法)2014多培训学校5现场

    Matrix multiplication                                                                           Time ...

  3. HDU 4920 Matrix multiplication (硬件优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4920 解题报告:求两个800*800的矩阵的乘法. 参考这篇论文:http://wenku.baidu ...

  4. hdu - 4920 - Matrix multiplication(缓存优化+开挂)

    题意:求两个n x n的矩阵相乘后模3的结果,n <= 800. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4920 -->>呀呀 ...

  5. hdu 4920 Matrix multiplication (矩阵计算)

    题目链接 题意:给两个矩阵a, b, 计算矩阵a*b的结果对3取余. 分析:直接计算时间复杂度是O(n^3),会超时,但是下面第一个代码勉强可以水过,数据的原因. #include <iostr ...

  6. 2014多校第五场1010 || HDU 4920 Matrix multiplication(矩阵乘法优化)

    题目链接 题意 : 给你两个n*n的矩阵,然后两个相乘得出结果是多少. 思路 :一开始因为知道会超时所以没敢用最普通的方法做,所以一直在想要怎么处理,没想到鹏哥告诉我们后台数据是随机跑的,所以极端数据 ...

  7. hdu 4920 Matrix multiplication bitset优化常数

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  8. HDU 4920 Matrix multiplication 矩阵相乘。稀疏矩阵

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  9. HDU 4920 Matrix multiplication(矩阵相乘)

    各种TEL,233啊.没想到是处理掉0的情况就能够过啊.一直以为会有极端数据.没想到居然是这种啊..在网上看到了一个AC的奇妙的代码,经典的矩阵乘法,仅仅只是把最内层的枚举,移到外面就过了啊...有点 ...

随机推荐

  1. 专题四:自定义Web浏览器

    前言: 前一个专题介绍了自定义的Web服务器,然而向Web服务器发出请求的正是本专题要介绍的Web浏览器,本专题通过简单自定义一个Web浏览器来简单介绍浏览器的工作原理,以及帮助一些初学者揭开浏览器这 ...

  2. Objective-C设计模式——中介者Mediator(对象去耦)

    中介者模式 中介者模式很好的诠释了迪米特法则,任意两个不相关的对象之间如果需要关联,那么需要通过第三个类来进行.中介者就是把一组对象进行封装,屏蔽了类之间的交互细节,使不同的类直接不需要持有对方引用也 ...

  3. .Net实战之反射外卖计费

    场景 叫外卖支付,可以有以下优惠: 1.  满30元减12 2.  是会员减配送费,比如5元 3.  优惠券 …. 问题? 如何在不改代码的情况下更灵活的去控制优惠的变化??? 有些代码与实际业务可能 ...

  4. 鼠标拖拽移动Java界面组件

    默认的,Frame或者JFrame自身已经实现了鼠标拖拽标题栏移动窗口的功能. 只是,当你不满意java的JFrame样式,隐藏了标题栏和边框,又或者干脆直接使用JWindow,那你又该怎么实现鼠标拖 ...

  5. Android开发笔记(1)——View

    笔记链接:http://www.cnblogs.com/igoslly/p/6781592.html   一.View基础知识            IDE——Integrated Developme ...

  6. 微信关于网页授权access_token和普通access_token的区别

    微信官网网址:https://mp.weixin.qq.com/wiki/17/c0f37d5704f0b64713d5d2c37b468d75.html#.E9.99.84.EF.BC.9A.E6. ...

  7. 5步上手体验kettle快捷调度方式

    https://my.oschina.net/u/944575/blog/1557410 kettle调度监控最佳实践 https://my.oschina.net/u/1026947/blog/15 ...

  8. PHP7 上传文件报错 Internal Server Error 解决方法

    打开Apache配置httpd.conf.在最后添加FcgidMaxRequestLen指令一个足够大的值(以字节为单位),例如 FcgidMaxRequestLen 100000000 最后重新启动 ...

  9. java继承问题

    代码: 父类: public class Father { public Father() { System.out.println("基类构造函数{"); show(); new ...

  10. nodejs连接数据库

    var express = require("express");var query = require("querystring");var mysql = ...