HDU 4920 Matrix multiplication

题目链接

题意:给定两个矩阵,求这两个矩阵相乘mod 3

思路:没什么好的想法,就把0的位置不考虑。结果就过了。然后看了官方题解,上面是用了bitset这个东西,能够用来存大的二进制数,那么对于行列相乘。事实上就几种情况,遇到0都是0了,1 1得1,2 1,1 2得2,2 2得1。所以仅仅要存下行列1和2存不存在分别表示的二进制数。然后取且bitcount一下的个数,就能够计算出对应的数值了

代码:

暴力:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; inline void scanf_(int &num)//无负数
{
char in;
while((in = getchar()) > '9' || in < '0') ;
num = in - '0';
while(in = getchar(),in >= '0' && in <= '9')
num *= 10,num += in - '0';
} const int N = 805; int n; int a[N][N], av[N][N], an[N], b[N][N], bv[N][N], bn[N], c[N][N]; int main() {
while (~scanf("%d", &n)) {
int num;
memset(an, 0, sizeof(an));
memset(bn, 0, sizeof(bn));
memset(c, 0, sizeof(c));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf_(num);
num %= 3;
if (num == 0) continue;
av[j][an[j]] = i;
a[j][an[j]++] = num;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf_(num);
num %= 3;
if (num == 0) continue;
bv[i][bn[i]] = j;
b[i][bn[i]++] = num;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < an[i]; j++) {
for (int k = 0; k < bn[i]; k++) {
int x = av[i][j], y = bv[i][k];
c[x][y] = (c[x][y] + a[i][j] * b[i][k]) % 3;
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n - 1; j++)
printf("%d ", c[i][j]);
printf("%d\n", c[i][n - 1]);
}
}
return 0;
}

bitset:

#include <cstdio>
#include <cstring>
#include <string>
#include <bitset>
using namespace std; const int N = 805;
int n, num;
bitset<800> row[N][2], col[N][2]; int main() {
while (~scanf("%d", &n)) {
for (int i = 0; i < n; i++) {
row[i][0].reset();
row[i][1].reset();
col[i][0].reset();
col[i][1].reset();
for (int j = 0; j < n; j++) {
scanf("%d", &num);
if (num % 3 == 1)
row[i][0].set(j, 1);
if (num % 3 == 2)
row[i][1].set(j, 1);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
scanf("%d", &num);
if (num % 3 == 1)
col[j][0].set(i, 1);
if (num % 3 == 2)
col[j][1].set(i, 1);
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int ans = 0;
ans += (row[i][0]&col[j][0]).count();
ans += 2 * (row[i][1]&col[j][0]).count() + 2 * (row[i][0]&col[j][1]).count();
ans += (row[i][1]&col[j][1]).count();
printf("%d%c", ans % 3, j == n - 1 ? '\n' : ' ');
}
}
}
return 0;
}

HDU 4920 Matrix multiplication(bitset)的更多相关文章

  1. HDU 4920 Matrix multiplication(bitset优化)

    题目链接 Matrix multiplication 求矩阵A和B相乘的结果. 因为答案只要对3取模,所以我们可以通过一些方法来加速计算. 我们对两个矩阵各开两个bitset,分别存储模3余1和模3余 ...

  2. hdu 4920 Matrix multiplication(矩阵乘法)2014多培训学校5现场

    Matrix multiplication                                                                           Time ...

  3. HDU 4920 Matrix multiplication (硬件优化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4920 解题报告:求两个800*800的矩阵的乘法. 参考这篇论文:http://wenku.baidu ...

  4. hdu - 4920 - Matrix multiplication(缓存优化+开挂)

    题意:求两个n x n的矩阵相乘后模3的结果,n <= 800. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4920 -->>呀呀 ...

  5. hdu 4920 Matrix multiplication (矩阵计算)

    题目链接 题意:给两个矩阵a, b, 计算矩阵a*b的结果对3取余. 分析:直接计算时间复杂度是O(n^3),会超时,但是下面第一个代码勉强可以水过,数据的原因. #include <iostr ...

  6. 2014多校第五场1010 || HDU 4920 Matrix multiplication(矩阵乘法优化)

    题目链接 题意 : 给你两个n*n的矩阵,然后两个相乘得出结果是多少. 思路 :一开始因为知道会超时所以没敢用最普通的方法做,所以一直在想要怎么处理,没想到鹏哥告诉我们后台数据是随机跑的,所以极端数据 ...

  7. hdu 4920 Matrix multiplication bitset优化常数

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  8. HDU 4920 Matrix multiplication 矩阵相乘。稀疏矩阵

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  9. HDU 4920 Matrix multiplication(矩阵相乘)

    各种TEL,233啊.没想到是处理掉0的情况就能够过啊.一直以为会有极端数据.没想到居然是这种啊..在网上看到了一个AC的奇妙的代码,经典的矩阵乘法,仅仅只是把最内层的枚举,移到外面就过了啊...有点 ...

随机推荐

  1. 漫谈未来的HDFS

    前面我们提到的HDFS,了解了HDFS的特性和架构.HDFS能够存储TB甚至PB规模的数据是有前提的,首先数据要以大文件为主,其次NameNode的内存要足够大.对HDFS有所了解的同学肯定都知道,N ...

  2. Mac使用之常用快捷键

    正式工作了,公司配给了mac,很多命令跟windows有很大不同,为了自己更好的使用mac本,特此记录平时常用的快捷键命令. 1.复制.保存等:command+c/s等,与windows不同的是ctr ...

  3. Android基础夯实--重温动画(一)之Tween Animation

    心灵鸡汤:真正成功的人生,不在于成就的大小,而在于你是否努力地去实现自我,喊出自己的声音,走出属于自己的道路. 摘要 不积跬步,无以至千里:不积小流,无以成江海.学习任何东西我们都离不开扎实的基础知识 ...

  4. Tcl之Read files for synthesis

    The following file is to read all design files into syntehsis tool automatically, like Cadence RTL C ...

  5. (独孤九剑)--cURL

    [一]概论 日常开发里,cURL使用最多的协议就是HTTP协议的GET.POST请求,其他协议和请求方式用的较少. [二]开启 开发前检验是否开启了cURL模块,开启方法为php.int中打开exte ...

  6. Spring Boot 缓存的基本用法

    目录 一.目的 二.JSR-107 缓存规范 三.Spring 缓存抽象 四.Demo 1.使用 IDEA 创建 Spring Boot 项目 2.创建相应的数据表 3.创建 Java Bean 封装 ...

  7. 行内块+calc+margin 三列布局

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  8. 监听微信端,手机端,ios端的浏览器返回事件,pc端关闭事件

    直接上代码了,可以监听微信端,手机端,iOS端的浏览器返回事件,关闭事件不支持 当进入该页面,我们就给这个history压入一个本地的连接.当点击返回.后退及上一页的操作时,就进行监听,在监听代码中实 ...

  9. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  10. ZOJ - 3993 - Safest Buildings (数学)

    参考:https://blog.csdn.net/KuHuaiShuXia/article/details/78408194 题意: 描述了吃鸡刷圈的问题,给出楼的坐标点,和两次刷圈的半径R和r,现在 ...