[Poj3744]Scout YYF I (概率dp + 矩阵乘法)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 9552 | Accepted: 2793 |
Description
Input
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
Sample Input
0.5 0.5
Sample Output
0.5000000
0.2500000
分析:
概率dp是需要顺着推的,定义dp[i]表示到i的概率。当i有雷时,dp[i] = 0;
否则 dp[i] = dp[i - 1] * p + dp[i - 1] * (1 - p)
最后输出dp[dis[n] + 1]即行。
因为n很大,转移又固定,可以联想到矩乘 + 快速幂。于是就0MS过了
坑: 输入雷不一定有序,需要排序,精度输出需要%.7f 不能 %.7lf。
AC代码:
# include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
using namespace std;
int n;
int dis[];
struct fi{
double data[][];
fi(){
for(int i = ;i < ;i++){
for(int j = ;j < ;j++){
data[i][j] = ;
}
}
}
}A,T,O;
inline fi operator *(fi A,fi B){
fi t;
for(int i = ;i < ;i++){
for(int j = ;j < ;j++){
for(int k = ;k < ;k++){
t.data[i][j] += A.data[i][k] * B.data[k][j];
}
}
}
return t;
}
fi cmd(fi C,int k){
fi D = O;
while(k){
if(k & )D = D * C;
k >>= ;
C = C * C;
}
return D;
}
double p;
int main(){
for(int i = ;i < ;i++)O.data[i][i] = 1.0;
while(~scanf("%d %lf",&n,&p)){
T.data[][] = (1.0 - p);
T.data[][] = p;
T.data[][] = 1.0;
T.data[][] = 0.0;
for(int i = ;i < ;i++){
for(int j = ;j < ;j++){
A.data[i][j] = 0.0;
}
}
A.data[][] = 1.0;
for(int i = ;i <= n;i++){
scanf("%d",&dis[i]);
}
sort(dis + ,dis + n + );
for(int i = ;i <= n;i++){
A = A * cmd(T,dis[i] - dis[i - ] - );
A.data[][] = ;
A = A * T;
}
printf("%.7f\n",A.data[][]);
}
}
[Poj3744]Scout YYF I (概率dp + 矩阵乘法)的更多相关文章
- poj3744 Scout YYF I[概率dp+矩阵优化]
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8598 Accepted: 2521 Descr ...
- POJ3744 Scout YYF I 概率DP+矩阵快速幂
http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...
- poj 3744 Scout YYF 1 (概率DP+矩阵快速幂)
F - Scout YYF I Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 3744 Scout YYF I 概率dp+矩阵快速幂
题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...
- POJ-3744 Scout YYF I 概率DP
题目链接:http://poj.org/problem?id=3744 简单的概率DP,分段处理,遇到mine特殊处理.f[i]=f[i-1]*p+f[i-2]*(1-p),i!=w+1,w为mine ...
- poj 3744 Scout YYF I(概率dp,矩阵优化)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5020 Accepted: 1355 Descr ...
- BZOJ2553[BeiJing2011]禁忌——AC自动机+概率DP+矩阵乘法
题目描述 Magic Land上的人们总是提起那个传说:他们的祖先John在那个东方岛屿帮助Koishi与其姐姐Satori最终战平.而后,Koishi恢复了读心的能力…… 如今,在John已经成为传 ...
- BZOJ1444[Jsoi2009]有趣的游戏——AC自动机+概率DP+矩阵乘法
题目描述 输入 注意 是0<=P, n , l, m≤ 10. 输出 样例输入 input 1 3 2 2 1 2 1 2 AB BA AA input 2 3 4 2 1 2 1 2 AABA ...
- 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法
[BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT 30%的 ...
随机推荐
- SPICE-HTML5 鼠标指针BUG修复
研究SPICE,找到了他们官方指定的HTML5客户端.下载下来用一下,发现跟网页VNC的水平差不多了.http://www.spice-space.org/page/Html5 服务端直接用QEMU起 ...
- 管道命令和xargs的区别(经典解释) 自己的总结
1. 简介 之所以能用到这个命令,关键是由于很多命令不支 持|管道来传递参数,而日常工作中有有这个必要, 所以就有了xargs命令,例如:find /sbin -perm +700 |ls -l 这个 ...
- 关于JDBC访问存储过程的问题
最近开发一个应用,需要调用一个入参为List的存储过程. 存储过程为: proc_test(p1 OUT Number, p2 IN Number, p3 IN TAB_CUSTOMER); 这个Li ...
- CAD交互绘制虚线(网页版)
用户可以在CAD控件视区任意位置绘制直线. 主要用到函数说明: _DMxDrawX::DrawLine 绘制一个直线.详细说明如下: 参数 说明 DOUBLE dX1 直线的开始点x坐标 DOUBLE ...
- U盘制作安装盘后容量不能恢复的解决方案
diskpartlist diskselect disk 0/1 --看具体U盘是0还是1clean
- VR技术在数据中心3D机房中的应用 (下)
VR技术在数据中心3D机房中的应用 (下) 前面给大家简单科普了一下VR的硬件设备以及VR在各个领域的应用,是不是觉得非常高大上?千言万语概括成一句话,VR能给用户带来前所未有的沉浸感和交互方式,让人 ...
- JS常用字符串处理方法应用总结
这篇文章主要总结了JS常用字符串的处理方法,需要的朋友可以参考下 1.indexOf()方法,从前往后查找字符串位置,大小写敏感,从0开始计数.同理,lastIndexOf() 方法从后往前,两个 ...
- URAL1966 Cipher Message 3
题目描述 题解: 能看出来的是,每一组数只能改最后一位,所以前$7$位动不了. 所以$KMP$跑一跑. 重点在于最后一位怎么搞. 如果$KMP$跑完了还没找到合适的位置,直接$puts("N ...
- 【转载】form表单的两种提交方式,submit和button的用法
1.当输入用户名和密码为空的时候,需要判断.这时候就用到了校验用户名和密码,这个需要在jsp的前端页面写:有两种方法,一种是用submit提交.一种是用button提交.方法一: 在jsp的前端页面的 ...
- [MVC][Shopping]Copy Will's Code
数据模型规划(Models) //DisplayNameAttribute 指定属性的显示名称 [DisplayName("商品类别")] //DisplayColumnAttri ...