E - BBQ Hard


Time limit : 2sec / Memory limit : 256MB

Score : 1400 points

Problem Statement

Snuke is having another barbeque party.

This time, he will make one serving of Skewer Meal.

He has a stock of N Skewer Meal Packs. The i-th Skewer Meal Pack contains one skewer, Ai pieces of beef and Bi pieces of green pepper. All skewers in these packs are different and distinguishable, while all pieces of beef and all pieces of green pepper are, respectively, indistinguishable.

To make a Skewer Meal, he chooses two of his Skewer Meal Packs, and takes out all of the contents from the chosen packs, that is, two skewers and some pieces of beef or green pepper. (Remaining Skewer Meal Packs will not be used.) Then, all those pieces of food are threaded onto both skewers, one by one, in any order.

(See the image in the Sample section for better understanding.)

In how many different ways can he make a Skewer Meal? Two ways of making a Skewer Meal is different if and only if the sets of the used skewers are different, or the orders of the pieces of food are different. Since this number can be extremely large, find it modulo 109+7.

Constraints

  • 2≦N≦200,000
  • 1≦Ai≦2000,1≦Bi≦2000

Input

The input is given from Standard Input in the following format:

N
A1 B1
A2 B2
:
AN BN

Output

Print the number of the different ways Snuke can make a serving of Skewer Meal, modulo 109+7.


Sample Input 1

3
1 1
1 1
2 1

Sample Output 1

26

The 26 ways of making a Skewer Meal are shown below. Gray bars represent skewers, each with a number denoting the Skewer Meal Set that contained the skewer. Brown and green rectangles represent pieces of beef and green pepper, respectively.

 
 
 

我们可以先强行把 有序对转化成无序对并可以自己加自己的形式,也就是题目要求的 Σ(i=1 to n)Σ(j=i+1 to n) C(a[i]+a[j]+b[i]+b[j] , a[i]+a[j])=[ Σ(i=1 to n)Σ(j=1 to n) C(a[i]+a[j]+b[i]+b[j] , a[i]+a[j])  - Σ(i= 1 to n) C(a[i]*2+b[i]*2 , a[i]*2) ]/2。

后面那个Σ好求,直接带一遍组合数就行了,所以现在问题的关键是Σ(i=1 to n)Σ(j=1 to n) C(a[i]+a[j]+b[i]+b[j] , a[i]+a[j]) 怎么求。

考虑到a[],b[]都是<=2000的,可以从这里入手。我们发现,设点X[i] = {-a[i] , -b[i]} ,Y[i] = {a[i] , b[i]} ,那么上式的含义就是在二维平面上,每次只能向右或者向上走,从每个X[i] 走到每个Y[j]的方案数的和,而这个玩意又很好dp,嗯。。。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int ha=1000000007;
const int maxn=4005;
const int N=200005,inv=ha/2+1;
int n,px[N],py[N],jc[maxn<<1];
int ans=0,f[maxn][maxn],ni[maxn<<1]; inline int add(int x,int y){
x+=y;
return x>=ha?x-ha:x;
} inline int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha;
return an;
} inline void init(){
jc[0]=1;
for(int i=1;i<=8000;i++) jc[i]=jc[i-1]*(ll)i%ha;
ni[8000]=ksm(jc[8000],ha-2);
for(int i=8000;i;i--) ni[i-1]=ni[i]*(ll)i%ha;
} inline void dp(){
for(int i=0;i<=4000;i++)
for(int j=0;j<=4000;j++){
if(i) f[i][j]=add(f[i][j],f[i-1][j]);
if(j) f[i][j]=add(f[i][j],f[i][j-1]);
}
} inline int C(int x,int y){
return jc[x]*(ll)ni[y]%ha*(ll)ni[x-y]%ha;
} inline void calc(){
for(int i=1;i<=n;i++) ans=add(ans,f[2000+px[i]][2000+py[i]]);
for(int i=1;i<=n;i++) ans=add(ans,ha-C((px[i]+py[i])<<1,py[i]<<1));
ans=ans*(ll)inv%ha;
} int main(){
init();
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d",px+i,py+i);
f[2000-px[i]][2000-py[i]]++;
}
dp();
calc();
printf("%d\n",ans);
return 0;
}

  

ATcoder 1983 BBQ Hard的更多相关文章

  1. AtCoder AGC001E BBQ Hard (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...

  2. AtCoder练习

    1. 3721 Smuggling Marbles 大意: 给定$n+1$节点树, $0$为根节点, 初始在一些节点放一个石子, 然后按顺序进行如下操作. 若$0$节点有石子, 则移入盒子 所有石子移 ...

  3. Atcoder Grand Contest 001E - BBQ Hard(组合意义转化,思维题)

    Atcoder 题面传送门 & 洛谷题面传送门 Yet another 思维题-- 注意到此题 \(n\) 数据范围很大,但是 \(a_i,b_i\) 数据范围很小,这能给我们什么启发呢? 观 ...

  4. 【agc001e】BBQ HARD(动态规划)

    [agc001e]BBQ HARD(动态规划) 题面 atcoder 洛谷 题解 这些agc都是写的整场的题解,现在还是把其中一些题目单独拿出来发 这题可以说非常妙了. 我们可以把这个值看做在网格图上 ...

  5. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  6. AtCoder Grand Contest 001 C Shorten Diameter 树的直径知识

    链接:http://agc001.contest.atcoder.jp/tasks/agc001_c 题解(官方): We use the following well-known fact abou ...

  7. org.eclipse.jdi.TimeoutException:Timeout occurred while waiting for packet 1983.occurred

    eclipse 增大junit内存配置 现象:eclipse在junit测试的时候出现如下错误 org.eclipse.jdi.TimeoutException:Timeout occurred wh ...

  8. AtCoder Regular Contest 082

    我都出了F了……结果并没有出E……atcoder让我差4分上橙是啥意思啊…… C - Together 题意:把每个数加1或减1或不变求最大众数. #include<cstdio> #in ...

  9. AtCoder Regular Contest 069 D

    D - Menagerie Time limit : 2sec / Memory limit : 256MB Score : 500 points Problem Statement Snuke, w ...

随机推荐

  1. Web Server Notifier 是chrome网上商店的一个插件

    Web Server Notifier 是chrome网上商店的一个插件

  2. postman使用方法详解

    postman的使用方法详解   Collections:在Postman中,Collection类似文件夹,可以把同一个项目的请求放在一个Collection里方便管理和分享,Collection里 ...

  3. ES6(vue)对象词法扩展

    ES6 允许声明在对象字面量时使用简写语法,来初始化属性变量和函数的定义方法,并且允许在对象属性中进行计算操作: function getCar(make, model, value) { retur ...

  4. Piston Pump Manufacturers - Mobile Cartridge Piston Pump: Advantages

    The    Piston Pump Manufacturers   states that the operation of any piston pump is based on the rela ...

  5. kubeadm1.14.1 安装Metrics Server

    Metrics API 介绍Metrics-Server之前,必须要提一下Metrics API的概念 Metrics API相比于之前的监控采集方式(hepaster)是一种新的思路,官方希望核心指 ...

  6. <Spring Cloud>入门二 Eureka Client

    1.搭建一个通用工程 1.1 pom 文件 <?xml version="1.0" encoding="UTF-8"?> <project x ...

  7. Mysql+MHA高可用集群

    http://www.ttlsa.com/mysql/step-one-by-one-deploy-mysql-mha-cluster/

  8. linux 部署nginx作为反向代理入口的内核参数/etc/sysctl.conf

    # Kernel sysctl configuration file for Red Hat Linux## For binary values, 0 is disabled, 1 is enable ...

  9. Linux组和提权

    目 录 第1章 组命名管理**    1 1.1 group组信息和密码信息    1 1.1.1 /etc/group 组账户信息    1 1.1.2 /etc/gshadow 组密码信息     ...

  10. 关于Python中包裹传参和解包裹的理解

    1.包裹传参 首先思考一个问题:为什么要有包裹传参?原因包括但不仅限于以下两点:①不确定参数的个数.②希望函数定义的更加松散灵活 包裹传参分两种:包裹位置传参和包裹关键字传参.先看包裹位置传参: 在这 ...