bzoj4289 PA2012 Tax——点边转化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4289
好巧妙的转化!感觉自己难以想出来...
参考了博客:https://blog.csdn.net/reverie_mjp/article/details/52134142
把边变成点,相互之间连边;
原图上由一个点连接的许多边之间应该通过连新边达到题目要求的取较大值的目的;
做法就是把一个原图点的关联边排序,然后较小的边向较大的边连边权为差值的新边,较大的边连回去边权为0的新边;
那么如果原图上要走 a,b 两条边,新图上两条边(点)之间有代价,付出代价等价于取较大值;
还要注意原图是无向图,连新边时要连向自己的反向边,因为新图连的都是有向边,所以这样可以实现原图中走一条边移动的效果,也就是两个原图点的关联边之间也有联系;
再建立一个源点和汇点,1号点的关联边都连向源点,连向 n 号点的边都连向汇点;
然后从源点开始跑最短路,到汇点的最短路就是答案。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long ll;
int const maxn=1e5+,maxm=4e5+;
int n,m,head[maxn],xt=,hd[maxm],ct=,tmp[maxm],t,S,T;
ll dis[maxm];
bool vis[maxm];
priority_queue<pair<ll,int> >q;//ll!!!
struct N{
int to,nxt,w;
N(int t=,int n=,int w=):to(t),nxt(n),w(w) {}
}ed[maxm<<],edge[maxm];
void add1(int x,int y,int w){edge[++xt]=N(y,head[x],w); head[x]=xt;}
void add2(int x,int y,int w){ed[++ct]=N(y,hd[x],w); hd[x]=ct;}
bool cmp(int x,int y){return edge[x].w<edge[y].w;}
void dijkstra()
{
memset(dis,0x3f,sizeof dis);
dis[S]=; q.push(make_pair(,S));
while(q.size())
{
int x=q.top().second; q.pop();
if(vis[x])continue;
vis[x]=;
for(int i=hd[x],u;i;i=ed[i].nxt)
{
if(dis[u=ed[i].to]>dis[x]+ed[i].w)
{
dis[u]=dis[x]+ed[i].w;
q.push(make_pair(-dis[u],u));
}
}
} }
int main()
{
scanf("%d%d",&n,&m);
for(int i=,x,y,z;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
add1(x,y,z); add1(y,x,z);
}
S=; T=*(m+);
for(int i=;i<=n;i++)
{
t=;
for(int j=head[i];j;j=edge[j].nxt)tmp[++t]=j;
sort(tmp+,tmp+t+,cmp);
for(int j=;j<=t;j++)
{
if(i==)add2(S,tmp[j],edge[tmp[j]].w);
if(edge[tmp[j]].to==n)add2(tmp[j],T,edge[tmp[j]].w);
add2(tmp[j]^,tmp[j],edge[tmp[j]].w);//!
if(j<t)
{
add2(tmp[j],tmp[j+],edge[tmp[j+]].w-edge[tmp[j]].w);
add2(tmp[j+],tmp[j],);
}
}
}
dijkstra();
printf("%lld\n",dis[T]);
return ;
}
bzoj4289 PA2012 Tax——点边转化的更多相关文章
- [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec Memo ...
- BZOJ4289 : PA2012 Tax
一个直观的想法是把每条边拆成两条有向边,同时每条有向边是新图中的一个点.对于两条边a->b与b->c,两点之间连有向边,费用为两条边费用的最大值.然后新建源点S与汇点T,由S向所有起点为1 ...
- [BZOJ4289][PA2012]TAX(最短路)
首先考虑一种暴力做法,为每条边拆成两条有向边,各建一个点.若某两条边有公共点,则在边所对应的点之间连一条边,权值为两条边中的较大值.这样跑最短路是$O(m^2\log m)$的. 用类似网络流中补流的 ...
- [Bzoj4289]PA2012 Tax(Dijkstra+技巧建图)
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...
- 【BZOJ-4289】Tax 最短路 + 技巧建图
4289: PA2012 Tax Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 168 Solved: 69[Submit][Status][Dis ...
- 「BZOJ 4289」 PA2012 Tax
「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...
- 【PA2012】【BZOJ4289】Tax
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值.求从起点1到点N的最小代价. 起点的代价是离开起点的边的边权.终点的代价是进入终点的边的 ...
- bzoj 4289: PA2012 Tax
Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...
- ●BZOJ 4289 PA2012 Tax
●赘述题目 算了,题目没有重复的必要. 注意理解:对答案造成贡献的是每个点,就是了. 举个栗子: 对于如下数据: 2 1 1 2 1 答案是 2: ●题解 方法:建图(难点)+最短路. 先来几个链接: ...
随机推荐
- 获得HttpServletRequest 和HttpSession对象
package org.jeecgframework.core.util; import java.util.HashMap; import java.util.Map; import javax.s ...
- mysql 统计数据,按照日期分组,把没有数据的日期也展示出来
因为业务需求,要统计每天的新增用户并且要用折线图的方式展示. 如果其中有一天没有新增用户的话,这一天就是空缺的,在绘制折线图的时候是不允许的,所有要求把没有数据的日期也要在图表显示. 查询2019-0 ...
- [MGR——Mysql的组复制之多主模式 ] 详细搭建部署过程
组复制可以在两种模式下运行. 1.在单主模式下,组复制具有自动选主功能,每次只有一个 server成员接受更新.2.在多主模式下,所有的 server 成员都可以同时接受更新. 组复制与异步主从复 ...
- Eclipse注释模板配置
不过感觉作用不大,因为@date这些不是标准的Java注释.
- 异步SOCKET分包和组包的一种通用算法
unit uPackage;// 应用协议// cxg 2016-9-23// 包=包头+包体 interface uses SysUtils, Classes, PeachCtrl.Net.Iocp ...
- TList实现的任务队列
TList实现的任务队列 var g_tasks: TList; type PTRecvPack = ^TRecvPack; TRecvPack = record // 接收到的原数据 socket: ...
- ubuntu16.04LTS安装软件
1.安装chrome 下载源加入到系统的源列表 sudo wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/ ...
- VB6 如何连接MYSQL数据库
1 从官网下载MYSQL的ODBC,选择与自己操作系统对应的版本(前提是你安装了MYSQL) http://dev.mysql.com/downloads/connector/odbc/ 2 安装 ...
- SQL 主机
SQL 主机 SQL 主机 如果您想要您的网站存储数据在数据库并从数据库显示数据,您的 Web 服务器必须能使用 SQL 语言访问数据库系统. 如果您的 Web 服务器托管在互联网服务提供商(ISP, ...
- Notepad++ 两个格式化插件
格式化HTML--Tidy2 本来都可以通过Notepad++中的“插件>Plugin Manager>Show Plugin Manager>Tidy2” 这种方式来安装,不过内地 ...