Why DocValues?

The standard way that Solr builds the index is with an inverted index. This style builds a list of terms found in all the documents in the index and next to each term is a list of documents that the term appears in (as well as how many times the term appears in that document). This makes search very fast - since users search by terms, having a ready list of term-to-document values makes the query process faster.

For other features that we now commonly associate with search, such as sorting, faceting, and highlighting, this approach is not very efficient. The faceting engine, for example, must look up each term that appears in each document that will make up the result set and pull the document IDs in order to build the facet list. In Solr, this is maintained in memory, and can be slow to load (depending on the number of documents, terms, etc.).

In Lucene 4.0, a new approach was introduced. DocValue fields are now column-oriented fields with a document-to-value mapping built at index time. This approach promises to relieve some of the memory requirements of the fieldCache and make lookups for faceting, sorting, and grouping much faster.

From day one Apache Lucene provided a solid inverted index datastructure and the ability to store the text and binary chunks in stored field. In a typical usecase the inverted index is used to retrieve & score documents matching one or more terms. Once the matching documents have been scored stored fields are loaded for the top N documents for display purposes. So far so good! However, the retrieval process is essentially limited to the information available in the inverted index like term & document frequency, boosts and normalization factors. So what if you need custom information to score or filter documents? Stored fields are designed for bulk read, meaning the perform best if you load all their data while during document retrieval we need more fine grained data.

Lucene provides a RAM resident FieldCache built from the inverted index once the FieldCache for a specific field is requested the first time or during index reopen. Internally we call this process un-inverting the field since the inverted index is a value to document mapping and FieldCache is a document to value datastructure. For simplicity think of an array indexed by Lucene’s internal documents ID. When the FieldCache is loaded Lucene iterates all terms in a field, parses the terms values and fills the arrays slots based on the document IDs associated with the term. Figure 1. illustrats the process.

Figure 1. Univerting a field to FieldCache

FieldCache serves very well for its purpose since accessing a value is basically doing a constant time array look. However, there are special cases where other datastructures are used in FieldCache but those are out of scope in this post.

摘自:http://blog.trifork.com/2011/10/27/introducing-lucene-index-doc-values/

Low Level Details

Lucene has four underlying types that a docvalues field can have. Currently Solr uses three of these:

  1. NUMERIC: a single-valued per-document numeric type. This is like having a large long[] array for the whole index, though the data is compressed based upon the values that are actually used.

    • For example, consider 3 documents with these values:

             doc[0] = 1005
      doc[1] = 1006
      doc[2] = 1005

      In this example the field would use around 1 bit per document, since that is all that is needed.

  2. SORTED: a single-valued per-document string type. This is like having a large String[] array for the whole index, but with an additional level of indirection. Each unique value is assigned a term number that represents its ordinal value. So each document really stores a compressed integer, and separately there is a "dictionary" mapping these term numbers back to term values.
    • For example, consider 3 documents with these values:

             doc[0] = "aardvark"
      doc[1] = "beaver"
      doc[2] = "aardvark"

      Value "aardvark" will be assigned ordinal 0, and "beaver" 1, creating these two data structures:

             doc[0] = 0
      doc[1] = 1
      doc[2] = 0 term[0] = "aardvark"
      term[1] = "beaver"
  3. SORTED_SET: a multi-valued per-document string type. Its similar to SORTED, except each document has a "set" of values (in increasing sorted order). So it intentionally discards duplicate values (frequency) within a document and loses order within the document.
    • For example, consider 3 documents with these values:

             doc[0] = "cat", "aardvark", "beaver", "aardvark"
      doc[1] =
      doc[2] = "cat"

      Value "aardvark" will be assigned ordinal 0, "beaver" 1, and "cat" 2, creating these two data structures:

             doc[0] = [0, 1, 2]
      doc[1] = []
      doc[2] = [2] term[0] = "aardvark"
      term[1] = "beaver"
      term[2] = "cat"
  4. BINARY: a single-valued per-document byte[] array. This can be used for encoding custom per-document datastructures.

lucene DocValues——本质是为通过docID查找某field的值 看图的更多相关文章

  1. lucene DocValues——本质是为通过docID查找某field的值

    什么是docValues? docValues是一种记录doc字段值的一种形式,在例如在结果排序和统计Facet查询时,需要通过docid取字段值的场景下是非常高效的. 为什么要使用docValues ...

  2. C语言:将ss所指字符串中所有下标为奇数位上的字母转换成大写,若不是字母,则不转换。-删除指针p所指字符串中的所有空白字符(包括制表符,回车符,换行符)-在带头结点的单向链表中,查找数据域中值为ch的结点,找到后通过函数值返回该结点在链表中所处的顺序号,

    //将ss所指字符串中所有下标为奇数位上的字母转换成大写,若不是字母,则不转换. #include <stdio.h> #include <string.h> void fun ...

  3. lucene DocValues——没有看懂

    前言: 在Lucene4.x之后,出现一个重大的特性,就是索引支持DocValues,这对于广大的solr和elasticsearch用户,无疑来说是一个福音,这玩意的出现通过牺牲一定的磁盘空间带来的 ...

  4. Elasticsearch压缩索引——lucene倒排索引本质是列存储+使用嵌套文档可以大幅度提高压缩率

    注意:由于是重复数据,词法不具有通用性!文章价值不大! 摘自:https://segmentfault.com/a/1190000002695169 Doc Values 会压缩存储重复的内容. 给定 ...

  5. 421. Maximum XOR of Two Numbers in an Array——本质:利用trie数据结构查找

    Given a non-empty array of numbers, a0, a1, a2, - , an-1, where 0 ≤ ai < 231. Find the maximum re ...

  6. 【游戏开发】小白学Lua——从Lua查找表元素的过程看元表、元方法

    引言 在上篇博客中,我们简单地学习了一下Lua的基本语法.其实在Lua中有一个还有一个叫元表的概念,不得不着重地探讨一下.元表在实际地开发中,也是会被极大程度地所使用到.本篇博客,就让我们从Lua查找 ...

  7. 使用FindControl("id")查找控件 返回值都是Null的问题

    做了一个通过字符串ID查找页面控件并且给页面控件赋值的功能,过程中遇到了this.FindControl("id")返回值都是Null的问题,记录一下解决办法. 问题的原因是我所要 ...

  8. mysql查找以逗号分隔的值-find_in_set

    有了FIND_IN_SET这个函数.我们可以设计一个如:一只手机即是智能机,又是Andriod系统的. 比如:有个产品表里有一个type字段,他存储的是产品(手机)类型,有 1.智能机,2.Andri ...

  9. C#算法设计查找篇之03-插值查找

    插值查找(Interpolation Search) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/701 访问. 插值 ...

随机推荐

  1. 大数据学习——hadoop的RPC框架

    项目结构 服务端代码 test-hadoop-rpc pom.xml <?xml version="1.0" encoding="UTF-8"?> ...

  2. (一)java集合框架——Iterable

    Iterable接口是java 集合框架的顶级接口,实现此接口使集合对象可以通过迭代器遍历自身元素,我们可以看下它的成员方法 修饰符和返回值 方法名 描述 Iterator<T> iter ...

  3. python 中range和xrange的区别

    range() 相当于直接构造一个列表,而xrange() 是返回一个迭代值. range用法: range( 开始值,结束值,步长) 在需要大量迭代的时候,比较适合使用xrange()

  4. HDU 5076 Memory

    Memory Time Limit: 4000ms Memory Limit: 262144KB This problem will be judged on HDU. Original ID: 50 ...

  5. [luoguP2216] [HAOI2007]理想的正方形(二维单调队列)

    传送门 1.先弄个单调队列求出每一行的区间为n的最大值最小值. 2.然后再搞个单调队列求1所求出的结果的区间为n的最大值最小值 3.最后扫一遍就行 懒得画图,自己体会吧. ——代码 #include ...

  6. Java 学习(4):基本数据类型,变量类型

    目录 --- 基本数据类型 --- 变量类型 基本数据类型 变量就是申请内存来存储值.也就是说,当创建变量的时候,需要在内存中申请空间. 内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用 ...

  7. asp.net 引发类型为“System.OutOfMemoryException”的异常

    asp.net 引发类型为“System.OutOfMemoryException”的异常通常发生在IIS进程获取不到内存时. 临时解决方法是: 回收IIS的应用程序池. 如果要比较好的解决办法是: ...

  8. 进程&进程池

    进程 服务器中, s.listen(n) n不能无限大,以为内存不可能无限大,n表示内存同一时间接纳的等待连接数,可以看成一个(队列),取出一个拿去建立连接,然后再放进一个,队列中一直保持n个连接 请 ...

  9. Two Sum(hashtable)

    Given an array of integers, find two numbers such that they add up to a specific target number. The ...

  10. 【Perl】perl正则表达式中的元字符、转义字符、量词及匹配方式

    Linux平台上被广泛使用的正则表达式库PCRE - Perl-compatible regular expressions,从其名字即可知道,PCRE提供的是一套与Perl中相兼容的正则表达式. 元 ...