注意到目录是一颗树结构,然后就简单了,预以1为根的处理出dis[u]为以这个点为根,到子树内的目录总长,si为子树内叶子数

第二遍dfs换根即可

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=100005;
int n,h[N],cnt,tot,si[N],de[N],l[N];
long long f[N],mn,dis[N];
bool v[N];
char c[20];
struct qwe
{
int ne,to;
}e[N<<1];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void pre(int u,int fa)
{
if(v[u])
return;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa)
{
pre(e[i].to,u);
si[u]+=si[e[i].to];
dis[u]+=dis[e[i].to];
}
dis[u]+=si[u]*l[u];
}
void dfs(int u,int fa)
{
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa)
{
f[e[i].to]=f[u]-si[e[i].to]*l[e[i].to]+3*(tot-si[e[i].to]);
dfs(e[i].to,u);
mn=min(mn,f[e[i].to]);
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
scanf("%s",c);
int m=read();
l[i]=strlen(c)+1;
if(!m)
tot++,dis[i]=strlen(c),v[i]=si[i]=1;
while(m--)
{
int x=read();
add(i,x),add(x,i);
}
}
pre(1,1);
for(int i=h[1];i;i=e[i].ne)
dis[1]-=l[1]*si[e[i].to];
f[1]=dis[1];
mn=f[1];
dfs(1,1);
printf("%lld",mn);
return 0;
}

bzoj 5195: [Usaco2018 Feb]Directory Traversal【树形dp】的更多相关文章

  1. BZOJ.3227.[SDOI2008]红黑树tree(树形DP 思路)

    BZOJ orz MilkyWay天天做sxt! 首先可以树形DP:\(f[i][j][0/1]\)表示\(i\)个点的子树中,黑高度为\(j\),根节点为红/黑节点的最小红节点数(最大同理). 转移 ...

  2. BZOJ.2286.[SDOI2011]消耗战(虚树 树形DP)

    题目链接 BZOJ 洛谷P2495 树形DP,对于每棵子树要么逐个删除其中要删除的边,要么直接断连向父节点的边. 如果当前点需要删除,那么直接断不需要再管子树. 复杂度O(m*n). 对于两个要删除的 ...

  3. bzoj 1060 [ZJOI2007]时态同步(树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1060 [题意] 求最少的增加量,使得以rt为根的树中由一个结点出发的所有到叶子结点的路 ...

  4. BZOJ 1509: [NOI2003]逃学的小孩( 树形dp )

    树形dp求出某个点的最长3条链a,b,c(a>=b>=c), 然后以这个点为交点的最优解一定是a+2b+c.好像还有一种做法是求出树的直径然后乱搞... ----------------- ...

  5. BZOJ.3238.[AHOI2013]差异(后缀自动机 树形DP/后缀数组 单调栈)

    题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1 ...

  6. BZOJ 3572: [Hnoi2014]世界树 虚树 树形dp

    https://www.lydsy.com/JudgeOnline/problem.php?id=3572 http://hzwer.com/6804.html 写的时候参考了hzwer的代码,不会写 ...

  7. BZOJ 3238: [Ahoi2013]差异 后缀自动机 树形dp

    http://www.lydsy.com/JudgeOnline/problem.php?id=3238 就算是全局变量,也不要忘记,初始化(吐血). 长得一副lca样,没想到是个树形dp(小丫头还有 ...

  8. 【bzoj2591】[Usaco 2012 Feb]Nearby Cows 树形dp

    题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...

  9. bzoj 5072 小A的树 —— 树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5072 由于对于一个子树,固定有 j 个黑点,连通块大小是一个连续的范围: 所以记 f[i][ ...

随机推荐

  1. PHP中的魔术方法【转载】

    __construct, __destruct , __call, __callStatic,__get, __set, __isset, __unset , __sleep, __wakeup, _ ...

  2. python之-微信开发学习

    微信公众平台技术文档https://mp.weixin.qq.com/wiki?t=resource/res_main&id=mp1445241432# 注意,最好以python3 运行,中文 ...

  3. Python 列表的复制操作

    2013-10-18 10:07:03|   import copy a = [1,2,3,['a','b']] b = a c = a[:] d = copy.copy(a) e = copy.de ...

  4. [MGR——Mysql的组复制之多主模式 ] 详细搭建部署过程

    组复制可以在两种模式下运行. 1.在单主模式下,组复制具有自动选主功能,每次只有一个 server成员接受更新.2.在多主模式下,所有的 server 成员都可以同时接受更新.   组复制与异步主从复 ...

  5. datasnap中间件如何控制长连接的客户端连接?

    ActiveConnections: TClientDataSet; ... 有客户端连接上来的时候 procedure TForm8.DSServer1Connect(DSConnectEventO ...

  6. How can we listen for errors that do not trigger window.onerror?

    原文: http://stackoverflow.com/questions/19141195/how-can-we-listen-for-errors-that-do-not-trigger-win ...

  7. iOS设计模式 - (1)概述

    近期可自由安排的时间比較多, iOS应用方面, 没什么好点子, 就先放下, 不写了.花点时间学学设计模式. 之后将会写一系列博文, 记录设计模式学习过程. 当然, 由于我自己是搞iOS的, 所以之后设 ...

  8. [NPM] Create a new project using the npm init <initializer> command

    Historically, the npm init command was solely use to create a new package.json file. However, as of ...

  9. Zookeeper 简单操作

    1.  连接到zookeeper服务 [java2000_wl@localhost zookeeper-3]$ bin/zkCli.sh -server 127.0.0.1:2181 也可以连接远端的 ...

  10. EXCEPT(差集)集合运算

    在集合论中,集合A与B的差集(A-B)是由属于集合A,但不属于集合B的元素组成的集合.可以认为两个集合的差A-B就是从A中减去B中也属于A的元素. 在T-SQL中,集合之差是用EXCEPT集合运算实现 ...