本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。习惯上,我们会按下面格式引入所需要的包:

http://www.cnblogs.com/chaosimple/p/4153083.html

一、            创建对象

可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引:

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame:

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame:

4、查看不同列的数据类型:

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:

二、            查看数据

详情请参阅:Basics Section

1、  查看frame中头部和尾部的行:

2、  显示索引、列和底层的numpy数据:

3、  describe()函数对于数据的快速统计汇总:

4、  对数据的转置:

5、  按轴进行排序

6、  按值进行排序

三、            选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing Data 和 MultiIndex / Advanced Indexing

l  获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A:

2、 通过[]进行选择,这将会对行进行切片

l  通过标签选择

1、 使用标签来获取一个交叉的区域

2、 通过标签来在多个轴上进行选择

3、 标签切片

4、 对于返回的对象进行维度缩减

5、 获取一个标量

6、 快速访问一个标量(与上一个方法等价)

l  通过位置选择

1、 通过传递数值进行位置选择(选择的是行)

2、 通过数值进行切片,与numpy/python中的情况类似

3、 通过指定一个位置的列表,与numpy/python中的情况类似

4、 对行进行切片

5、 对列进行切片

6、 获取特定的值

l  布尔索引

1、 使用一个单独列的值来选择数据:

2、 使用where操作来选择数据:

3、 使用isin()方法来过滤:

l  设置

1、 设置一个新的列:

2、 通过标签设置新的值:

3、 通过位置设置新的值:

4、 通过一个numpy数组设置一组新值:

上述操作结果如下:

5、 通过where操作来设置新的值:

四、            缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section

1、  reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、

2、  去掉包含缺失值的行:

3、  对缺失值进行填充:

4、  对数据进行布尔填充:

五、            相关操作

详情请参与 Basic Section On Binary Ops

l  统计(相关操作通常情况下不包括缺失值)

1、  执行描述性统计:

2、  在其他轴上进行相同的操作:

3、  对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:

l  Apply

1、  对数据应用函数:

l  直方图

具体请参照:Histogramming and Discretization

l  字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

六、            合并

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

l  Concat

l  Join 类似于SQL类型的合并,具体请参阅:Database style joining

l  Append 将一行连接到一个DataFrame上,具体请参阅Appending

七、            分组

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

l  (Splitting)按照一些规则将数据分为不同的组;

l  (Applying)对于每组数据分别执行一个函数;

l  (Combining)将结果组合到一个数据结构中;

详情请参阅:Grouping section

1、  分组并对每个分组执行sum函数:

2、  通过多个列进行分组形成一个层次索引,然后执行函数:

八、            Reshaping

详情请参阅 Hierarchical Indexing 和 Reshaping

l  Stack

l  数据透视表,详情请参阅:Pivot Tables.

可以从这个数据中轻松的生成数据透视表:

九、            时间序列

Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section

1、  时区表示:

2、  时区转换:

3、  时间跨度转换:

4、  时期和时间戳之间的转换使得可以使用一些方便的算术函数。

十、            Categorical

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introductionAPI documentation

1、  将原始的grade转换为Categorical数据类型:

2、  将Categorical类型数据重命名为更有意义的名称:

3、  对类别进行重新排序,增加缺失的类别:

4、  排序是按照Categorical的顺序进行的而不是按照字典顺序进行:

5、  对Categorical列进行排序时存在空的类别:

十一、           画图

具体文档参看:Plotting docs

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

十二、           导入和保存数据

l  CSV,参考:Writing to a csv file

1、  写入csv文件:

2、  从csv文件中读取:

l  HDF5,参考:HDFStores

1、  写入HDF5存储:

2、  从HDF5存储中读取:

l  Excel,参考:MS Excel

1、  写入excel文件:

2、  从excel文件中读取:

10 Minutes to pandas中文版的更多相关文章

  1. 《10 minutes to pandas》(转)

    原文出处:http://pandas.pydata.org/pandas-docs/stable/10min.html 10 Minutes to pandas This is a short int ...

  2. Cookbook:pandas的学习之路——10 Minutes to pandas

    按照pandas官网上10 Minutes to pandas的快速练习: 一 .对象创建: 导入练习所需要的工具包: 通过列表中的值创建序列Series,pandas在创建序列的同时会默认为列表中值 ...

  3. 10 Minutes to pandas

    摘要   一.创建对象 二.查看数据 三.选择和设置 四.缺失值处理 五.相关操作 六.聚合 七.重排(Reshaping) 八.时间序列 九.Categorical类型   十.画图      十一 ...

  4. 10分钟学习pandas

    10 Minutes to pandas This is a short introduction to pandas, geared mainly for new users. You can se ...

  5. 10分钟了解 pandas - pandas官方文档译文 [原创]

    10 Minutes to pandas 英文原文:https://pandas.pydata.org/pandas-docs/stable/10min.html 版本:pandas 0.23.4 采 ...

  6. python 10分钟入门pandas

    本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯 ...

  7. The replication agent has not logged a progress message in 10 minutes.

    打开Replication Monitor,在Subscription Watch List Tab中,发现有大量的status= “Performance critical” 的黄色Warning, ...

  8. 十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less))

    十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less)) 注:本文为翻译文章,因翻译水平有限,难免有缺漏不足之处,可查看原文. 我们知道写css代码是非常枯燥的 ...

  9. jenkins git can't work ERROR: Timeout after 10 minutes ERROR: Error fetching remote repo 'origin'

    Started by user Allen Running as Allen Building remotely on MISTestSrv2 (MIS) in workspace C:\jenkin ...

随机推荐

  1. poj 3683(2-sat+拓扑排序)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11127   Accep ...

  2. POJ2749 Building road

    传送门 这道题真是2-SAT好题啊!!卡了我两个点才做完……垃圾POJ还不告诉我哪错了…… 首先我们先花一段时间把题看懂……(其实是翻译一下),之后我们发现因为每个谷仓只能向一个中转点连边,所以他就是 ...

  3. bzoj1407 [Noi2002]Savage——扩展欧几里得

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1407 看到一定有解,而且小于10^6,所以可以枚举: 判断一个解是否可行,就两两判断野人 i ...

  4. Python基础Web服务器案例

    一.WSGI 1.PythonWeb服务器网关接口(Python Web Server Gateway Interface,缩写为WSGI) 是Python应用程序或框架和Web服务器之间的一种接口, ...

  5. 基于Linux系统的Shell编程-基础篇

    1. Shell基础介绍 1.1 Shell编程的意义 为什么使用shell编程 节约时间 1.2 显示脚本执行过程 前面有+表示执行过的命令的 前面没有东西,表示输出到屏幕上的内容. [root@C ...

  6. bzoj 2100: [Usaco2010 Dec]Apple Delivery【spfa】

    洛谷数据好强啊,普通spfa开o2都过不了,要加双端队列优化 因为是双向边,所以dis(u,v)=dis(v,u),所以分别以pa1和pa2为起点spfa一遍,表示pb-->pa1-->p ...

  7. [Swift通天遁地]一、超级工具-(19)制作六种别具风格的动作表单

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

  8. Android内存管理(14)*使用开源库LeakCanary检查内存泄漏

    1.简介 它是一个非常简单好用的内存泄漏检测工具库.可以轻松检测Activity,Fragment的内存泄漏.如果有内存泄漏,它会产生一个通知. 2.资料 官网: https://github.com ...

  9. TCP/IP与Http与socket的关系

    1 理清概念: TCP/IP是一个大的协议族(只不过TCP和IP是super star所以就这么命名了),它包括了: 应用层协议:FTP.HTTP.TELNET.SMTP.DNS(协议): 传输层协议 ...

  10. Windows 2008中部署dll到GAC

    两种方法: 1  gacutil.exe 2 直接拖动DLL到GAC (此种方式要关闭UAC,否则提示"Access is Denied")