[bzoj3012][luogu3065][USACO12DEC][第一!First!] (trie+拓扑排序判环)
题目描述
Bessie has been playing with strings again. She found that by
changing the order of the alphabet she could make some strings come before all the others lexicographically (dictionary ordering).
For instance Bessie found that for the strings "omm", "moo", "mom", and "ommnom" she could make "mom" appear first using the standard alphabet and that she could make "omm" appear first using the alphabet
"abcdefghijklonmpqrstuvwxyz". However, Bessie couldn't figure out any way to make "moo" or "ommnom" appear first.
Help Bessie by computing which strings in the input could be
lexicographically first by rearranging the order of the alphabet. To compute if string X is lexicographically before string Y find the index of the first character in which they differ, j. If no such index exists then X is lexicographically before Y if X is shorter than Y. Otherwise X is lexicographically before Y if X[j] occurs earlier in the alphabet than Y[j].
给出n个字符串,问哪些串能在特定的字母顺序中字典序最小。
输入输出格式
输入格式:
Line 1: A single line containing N (1 <= N <= 30,000), the number of strings Bessie is playing with.
- Lines 2..1+N: Each line contains a non-empty string. The total number of characters in all strings will be no more than 300,000. All characters in input will be lowercase characters 'a' through 'z'. Input will contain no duplicate strings.
输出格式:
Line 1: A single line containing K, the number of strings that could be lexicographically first.
- Lines 2..1+K: The (1+i)th line should contain the ith string that could be lexicographically first. Strings should be output in the same order they were given in the input.
输入输出样例
omm
moo
mom
ommnom
omm
mom
说明
The example from the problem statement.
Only "omm" and "mom" can be ordered first.
Solution
要想使一个词语的字典序最小,首先应满足长度尽量短,也就是没有任何一个词构成当前词的前缀
其次是词的每一位都要严格大于与之享有共同前缀的词语
首先对词典建一棵trie
要满足答案的串必须满足其终止节点到根没有其他终止节点,也就是第一个限定
向需要规定大小关系的字符间连边
拓扑排序一下,判环,若无环则可以作为答案输出
(最近尽量写思路清晰但是比较长的程序,其实我是有能力写得很短跑得很快的,但在平时这样似乎没有什么意义,思路清晰最重要吧,毕竟把程序变快是很简单的事)
#include <stdio.h>
#include <memory.h>
#define MaxN 30010
#define MaxL 300010
#define MaxBuf 1<<22
#define Blue() ((S==T&&(T=(S=B)+fread(B,1,MaxBuf,stdin),S==T))?0:*S++)
char B[MaxBuf],*S=B,*T=B;
template<class Type>inline void Rin(Type &x){
x=;int c=Blue();
for(;c<||c>;c=Blue())
;
for(;c>&&c<;c=Blue())
x=(x<<)+(x<<)+c-;
}
inline void geTc(char *C,int &x){
x=;char c=Blue();
for(;c<'a'||c>'z';c=Blue())
;
for(;c>='a'&&c<='z';c=Blue())
*C++=c,x++;
}
bool g[][];
char ch[MaxL],fol[MaxL];
int n,l,pointer,ans,lef[MaxN],in[],out[],o[MaxN];
class Trie{
int ch[MaxL][],root,tot,belong[MaxL];
public:
Trie(){
root=tot=;
memset(ch,,sizeof ch);
memset(belong,,sizeof belong);
}
inline void insert(char *C,int len,int tim){
int at=root;
lef[tim]=pointer;
for(int i=;i<len;i++){
fol[pointer++]=C[i];
if(!ch[at][C[i]-'a'])
ch[at][C[i]-'a']=++tot;
at=ch[at][C[i]-'a'];
}
belong[at]=tim;
}
inline bool design(int i){
int at=root;
for(int j=lef[i];j<lef[i+];j++){
if(belong[at])return false;
int c=fol[j]-'a';
for(int k=;k<;k++)
if(ch[at][k]&&k!=c&&!g[c][k]){
g[c][k]=true;
in[k]++;
out[c]++;
}
at=ch[at][c];
}
return true;
}
}Tree;
namespace enumerate{
bool vis[];
int _que[],hd,tl,tot,sum;
inline bool topsort(){
tot=sum=;
hd=;tl=;
for(int i=;i<;i++){
if(in[i] || out[i])
tot++;
if(!in[i] && out[i]){
_que[++tl]=i; vis[i]=true;
}
else vis[i]=false;
}
while(hd<=tl){
sum++;
int now=_que[hd++];
for(int i=;i<;i++)
if(g[now][i]){
in[i]--;
if(!in[i] && !vis[i]){
_que[++tl]=i; vis[i]=true;
}
}
}
return tot==sum;
}
void main(){
for(int i=;i<=n;i++){
memset(g,false,sizeof g);
memset(in,,sizeof in);
memset(out,,sizeof out);
if(Tree.design(i) && topsort())
o[++ans]=i;
}
}
}
#define FO(x) {freopen(#x".in","r",stdin);}
int main(){
FO(usaco12dec first);
Rin(n);
for(int i=;i<=n;i++){
geTc(ch,l);
Tree.insert(ch,l,i);
}
lef[n+]=pointer;
enumerate::main();
printf("%d\n",ans);
for(int i=;i<=ans;i++){
for(int j=lef[o[i]];j<lef[o[i]+];j++)
putchar(fol[j]);
putchar('\n');
}
return ;
}
[bzoj3012][luogu3065][USACO12DEC][第一!First!] (trie+拓扑排序判环)的更多相关文章
- Legal or Not(拓扑排序判环)
http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Time Limit: 2000/1000 MS (Java/Others) ...
- POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)
Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 39602 Accepted: 13 ...
- LightOJ1003---Drunk(拓扑排序判环)
One of my friends is always drunk. So, sometimes I get a bit confused whether he is drunk or not. So ...
- HDU1811 拓扑排序判环+并查集
HDU Rank of Tetris 题目:http://acm.hdu.edu.cn/showproblem.php?pid=1811 题意:中文问题就不解释题意了. 这道题其实就是一个拓扑排序判圈 ...
- Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)
Almost Acyclic Graph CodeForces - 915D time limit per test 1 second memory limit per test 256 megaby ...
- [USACO12DEC]第一!First! (Trie树,拓扑排序)
题目链接 Solution 感觉比较巧的题啊... 考虑几点: 可以交换无数次字母表,即字母表可以为任意形态. 对于以其他字符串为前缀的字符串,我们可以直接舍去. 因为此时它所包含的前缀的字典序绝对比 ...
- 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环
[题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...
- [Luogu3065][USACO12DEC]第一!First!
题目描述 Bessie has been playing with strings again. She found that by changing the order of the alphabe ...
- bzoj 3012: [Usaco2012 Dec]First! Trie+拓扑排序
题目大意: 给定n个总长不超过m的互不相同的字符串,现在你可以任意指定字符之间的大小关系.问有多少个串可能成为字典序最小的串,并输出这些串.n <= 30,000 , m <= 300,0 ...
随机推荐
- CSS3 动画 @keyframes
通过 CSS3,我们能够创建动画,这可以在许多网页中取代动画图片.Flash 以及 JavaScript. 如下动画,常用于手机端,提示用户往下拖动的渐隐渐出效果. Demo 关键CSS代码 1. 给 ...
- 清北考前刷题day1下午好
水题(water) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK出了道水题. 这个水题是这样的:有两副牌,每副牌都有n张. 对于第一副牌的每张牌长和宽 ...
- [App Store Connect帮助]六、测试 Beta 版本(3.2)管理测试员:邀请外部测试员
在您上传至少一个构建版本之后,您可以邀请外部测试员(您组织之外的人员)使用“TestFlight Beta 版测试”来测试您的 App.为了使您的构建版本可用于外部测试,请创建一个群组.添加构建版本, ...
- 洛谷 P1233 木棍加工
题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...
- CSMA/CA协议
802.11中采用CSMA/CA协议来规定多个工作节点共用信道的问题. CSMA/CA的全称是Carrier sense multiple access with collision avoidanc ...
- spring cxf 配置步骤
spring 项目增加web service的步骤:1.复制cxf的jar包2.web.xml配置cxf的核心控制器:org.apache.cxf.transport.servlet.CXFServl ...
- 离散化+BFS HDOJ 4444 Walk
题目传送门 /* 题意:问一个点到另一个点的最少转向次数. 坐标离散化+BFS:因为数据很大,先对坐标离散化后,三维(有方向的)BFS 关键理解坐标离散化,BFS部分可参考HDOJ_1728 */ # ...
- 282 Expression Add Operators 给表达式添加运算符
给定一个仅包含0-9的字符串和一个目标值,返回在数字之间添加了二元运算符(不是一元的) +.-或*之后所有能得到目标值的情况.例如:"123", 6 -> ["1+ ...
- CF 334 div.2-D Moodular Arithmetic
思路: 易知k = 0的时候答案是pp-1,k = 1的时候答案是pp. 当k >= 2的时候,f(0) = 0,对于 1 <= n <= p - 1,如果f(n)确定,由题意可知f ...
- css样式获取及兼容性(原生js)
类选择器兼容性 getbyclass()类选择器,在IE8及以下均不可用. // 类选择器的兼容性 function getbyclass(parentName,Name){ var parentNa ...