Limited Permutation

Problem Description
As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplicated for each 1≤i≤n to calculate (li,ri) meeting the condition that min(pL,pL+1,⋯,pR)=pi if and only if li≤L≤i≤R≤ri for each 1≤L≤R≤n.

Given the positive integers n, (li,ri) (1≤i≤n), you are asked to calculate the number of possible permutations p1,p2,⋯,pn from 1 to n, meeting the above condition.

The answer may be very large, so you only need to give the value of answer modulo 109+7.

 
Input
The input contains multiple test cases.

For each test case:

The first line contains one positive integer n, satisfying 1≤n≤106.

The second line contains n positive integers l1,l2,⋯,ln, satisfying 1≤li≤i for each 1≤i≤n.

The third line contains n positive integers r1,r2,⋯,rn, satisfying i≤ri≤n for each 1≤i≤n.

It's guaranteed that the sum of n in all test cases is not larger than 3⋅106.

Warm Tips for C/C++: input data is so large (about 38 MiB) that we recommend to use fread() for buffering friendly.

size_t fread(void *buffer, size_t size, size_t count, FILE *stream); // reads an array of count elements, each one with a size of size bytes, from the stream and stores them in the block of memory specified by buffer; the total number of elements successfully read is returned.
 
Output
For each test case, output "Case #x: y" in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
 
Sample Input
3 1 1 3 1 3 3 5 1 2 2 4 5 5 2 5 5 5
 
Sample Output
Case #1: 2
Case #2: 3
 

题解:

  看懂题意

  每个pi掌管 L ,R,题意是指超过这段范围就有比pi还要小的值

  所有必然有一个pi 值掌管 1,n的,推出  必有  pj,pk分别 掌管 (1,i - 1), (i+1,n)

  dfs下去计算方案

  还有就是必须用读入挂才能过

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 1e6+, M = 1e3+,inf = 2e9,mod = 1e9 + ;
namespace IO {
const int MX = 4e7; //1e7占用内存11000kb
char buf[MX]; int c, sz;
void begin() {
c = ;
sz = fread(buf, , MX, stdin);
}
inline bool read(int &t) {
while(c < sz && buf[c] != '-' && (buf[c] < '' || buf[c] > '')) c++;
if(c >= sz) return false;
bool flag = ; if(buf[c] == '-') flag = , c++;
for(t = ; c < sz && '' <= buf[c] && buf[c] <= ''; c++) t = t * + buf[c] - '';
if(flag) t = -t;
return true;
}
} const int MOD = (int)1e9 + ;
int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘
void init(){
inv[] = ;
for(int i = ; i < N; i ++){
inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
}
F[] = Finv[] = ;
for(int i = ; i < N; i ++){
F[i] = F[i-] * 1ll * i % MOD;
Finv[i] = Finv[i-] * 1ll * inv[i] % MOD;
}
}
inline LL C(int n, int m){//comb(n, m)就是C(n, m)
if(m < || m > n) return ;
return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
} struct ss{
int l,r,id;
bool operator<(const ss& x) const{
if(l == x.l) return r > x.r;
else return l < x.l;
}
}a[N];
int now,ok;
inline LL dfs(int ll,int rr) {
if(!ok) return ;
if(ll > rr) return 1LL;
if(a[now].l != ll || a[now].r != rr) {
ok = ;
return ;
}
int ids = a[now++].id;
return dfs(ll,ids-) * dfs(ids+,rr) % mod * C(rr-ll,ids-ll) % mod;
}
int main() {
init();
int cas = ,n;
IO::begin();
while(IO::read(n)) {
for(int i = ; i <= n; ++i) IO::read(a[i].l);
for(int i = ; i <= n; ++i) IO::read(a[i].r),a[i].id = i;
now = , ok = ;
sort(a+,a+n+);
printf("Case #%d: %lld\n",cas++,dfs(,n));
}
return ;
}

HDU 6044 Limited Permutation 读入挂+组合数学的更多相关文章

  1. HDU 6044 - Limited Permutation | 2017 Multi-University Training Contest 1

    研究一下建树 : /* HDU 6044 - Limited Permutation [ 读入优化,笛卡尔树 ] | 2017 Multi-University Training Contest 1 ...

  2. hdu 6044 : Limited Permutation (2017 多校第一场 1012) 【输入挂 组合数学】

    题目链接 参考博客: http://blog.csdn.net/jinglinxiao/article/details/76165353 http://blog.csdn.net/qq_3175920 ...

  3. HDU 6044 Limited Permutation(搜索+读入优化)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6044 [题目大意] 给出两个序列li,ri,现在要求构造排列p,使得对于区间[li,ri]来说, ...

  4. HDU 6396 贪心+优先队列+读入挂

    Swordsman Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  5. HDU 6396 Swordsman --------2018 Multi-University Training Contest 7 (模拟+读入挂)

    原题地址: 打怪升级 一开始有N个怪物:主角有K个能力:只有K个能力都击败怪物才能斩杀怪物并获得K个能力的增值:问最多能杀几个怪物: 做法: 用优先队列把怪物能力装进去:能力小放前面: 最重要的是数据 ...

  6. 读入挂(IO)

    快如闪电,清华杜瑜皓的读入挂,一模一样代码,加了这个之后... 细思极恐,and 整整行!!! namespace IO{ #define BUF_SIZE 100000 #define OUT_SI ...

  7. JAVA读入挂

    队友扒的uwi的读入挂,非常强,再也不用担心java比C++慢了-- import java.util.*; import java.math.*; import java.io.ByteArrayI ...

  8. 牛客网 牛客练习赛43 C.Tachibana Kanade Loves Review-最小生成树(并查集+Kruskal)+建虚点+读入挂

    链接:https://ac.nowcoder.com/acm/contest/548/C来源:牛客网 Tachibana Kanade Loves Review 时间限制:C/C++ 2秒,其他语言4 ...

  9. 洛谷 P4149 [IOI2011]Race-树分治(点分治,不容斥版)+读入挂-树上求一条路径,权值和等于 K,且边的数量最小

    P4149 [IOI2011]Race 题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK,且边的数量最小. 输入格式 第一行包含两个整数 n, Kn,K. 接下来 n - 1n−1 行 ...

随机推荐

  1. TOJ 1203: Number Sequence

    1203: Number Sequence Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByte Total Submi ...

  2. shell的while循环

    while循环用于不断执行一系列命令,也用于从输入文件中读取数据:命令通常为测试条件.其格式为: while command do    Statement(s) to be executed if ...

  3. 【Luogu】P2912牧场散步(TarjanLCA)

    题目链接 老天……终于碰上一个除了模板之外的LCA题了 这道题用Tarjan来LCA.树上两个点的路径是唯一的,所以钦定一个根,两点间的路径就是两点到根的路径减去双倍的公共祖先到根的路径.大概很好理解 ...

  4. HDU 3949 XOR ——线形基 高斯消元

    [题目分析] 异或空间的K小值. 高斯消元和动态维护线形基两种方法都试了试. 动态维护更好些,也更快(QAQ,我要高斯消元有何用) 高斯消元可以用来开拓视野. 注意0和-1的情况 [代码] 高斯消元 ...

  5. SLF4J 简单日志门面 介绍和使用

    参考:http://singleant.iteye.com/blog/934593        http://liuzidong.iteye.com/blog/776072 介绍: 简单日记门面(s ...

  6. 标准C程序设计七---21

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  7. 某考试 T1 sigfib

    设 g(x) = f(x) * x ,多项式 A = Σ g(i) * x^i , 多项式  B = Σ f(i) * x^i. 首先,g(x) = g(x-1) + g(x-2) + f(x-1) ...

  8. express---express-session axios

    express---express-session axios 使用axios访问后台获取session中的属性值为undefined 在main.js中导入axios import axios fr ...

  9. install Python 2.7 and Python 3.3 on CentOS 6

    来自:http://toomuchdata.com/2014/02/16/how-to-install-python-on-centos/ In this guide I will show you ...

  10. 上手ReactiveCocoa之基础篇

    转自 --> http://www.jianshu.com/p/87ef6720a096 前言 很多blog都说ReactiveCocoa好用,然后各种秀自己如何灵活运用ReactiveCoco ...