题面

传送门

题解

按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵个数减去全为\(0\)的子矩阵个数,单调栈搞一搞就好了

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1005,P=1e9+7;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))(y&1)?res=mul(res,x):0;
return res;
}
int a[N][N],st[N],c[N],b[N][N],bin[35],resor,resand,n,mx,top,sum;bool mp[N][N];
int calc(int id,int k){
int res=0,now,cc;
fp(i,1,n)fp(j,1,n)mp[i][j]=((a[i][j]>>id&1)==k);
fp(i,1,n){
fp(j,1,n)b[i][j]=(mp[i][j]?b[i-1][j]+1:0);
top=0,now=0;
fp(j,1,n){
cc=0;
while(top&&st[top]>=b[i][j])now-=c[top]*st[top],cc+=c[top],--top;
st[++top]=b[i][j],c[top]=cc+1,now+=st[top]*c[top],res=add(res,now);
}
}
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),sum=(1ll*n*(n+1)*n*(n+1)>>2)%P;
fp(i,1,n)fp(j,1,n)a[i][j]=read(),cmax(mx,a[i][j]);
mx=log2(mx);bin[0]=1;fp(i,1,mx)bin[i]=mul(bin[i-1],2);
fp(i,0,mx)resand=add(resand,mul(calc(i,1),bin[i]));
fp(i,0,mx)resor=add(resor,mul(dec(sum,calc(i,0)),bin[i]));
printf("%d %d\n",resand,resor);
return 0;
}

LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)的更多相关文章

  1. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  2. 【LOJ】#3083. 「GXOI / GZOI2019」与或和

    LOJ#3083. 「GXOI / GZOI2019」与或和 显然是先拆位,AND的答案是所有数字为1的子矩阵的个数 OR是所有的子矩阵个数减去所有数字为0的子矩阵的个数 子矩阵怎么求可以记录每个位置 ...

  3. Loj #3085. 「GXOI / GZOI2019」特技飞行

    Loj #3085. 「GXOI / GZOI2019」特技飞行 题目描述 公元 \(9012\) 年,Z 市的航空基地计划举行一场特技飞行表演.表演的场地可以看作一个二维平面直角坐标系,其中横坐标代 ...

  4. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  5. LOJ#3087. 「GXOI / GZOI2019」旅行者(最短路)

    题面 传送门 题解 以所有的感兴趣的城市为起点,我们正着和反着各跑一边多源最短路.记\(c_{0/1,i}\)分别表示正图/反图中离\(i\)最近的起点,那么对于每条边\((u,v,w)\),如果\( ...

  6. LOJ#3086. 「GXOI / GZOI2019」逼死强迫症(矩阵快速幂)

    题面 传送门 题解 先考虑全都放\(1\times 2\)的方块的方案,设防\(i\)列的方案数为\(g_i\),容易推出\(g_i=g_{i-1}+g_{i-2}\),边界条件为\(g_0=g_1= ...

  7. LOJ#3085. 「GXOI / GZOI2019」特技飞行(KDtree+坐标系变换)

    题面 传送门 前置芝士 请确定您会曼哈顿距离和切比雪夫距离之间的转换,以及\(KDtree\)对切比雪夫距离的操作 题解 我们发现\(AB\)和\(C\)没有任何关系,所以关于\(C\)可以直接暴力数 ...

  8. LOJ#3084. 「GXOI / GZOI2019」宝牌一大堆(递推)

    题面 传送门 题解 为什么又是麻将啊啊啊!而且还是我最讨厌的爆搜类\(dp\)-- 首先国士无双和七对子是可以直接搞掉的,关键是剩下的,可以看成\(1\)个雀头加\(4\)个杠子或面子 直接\(dp\ ...

  9. 「GXOI / GZOI2019」简要题解

    「GXOI / GZOI2019」简要题解 LOJ#3083. 「GXOI / GZOI2019」与或和 https://loj.ac/problem/3083 题意:求一个矩阵的所有子矩阵的与和 和 ...

随机推荐

  1. 13 MySQL--存储过程

    1.存储过程的介绍 对于存储过程,可以接收参数,其参数有三类: in 仅用于传入参数用 out 仅用于返回值用 inout 既可以传入又可以当作返回值 存储过程包含了一系列可执行的sql语句,存储过程 ...

  2. 迷你MVVM框架 avalonjs 学习教程7、数据缓存

    jQuery的许多功能都可以通过avalon的绑定属性来处理,如click方法对应ms-click,css方法对应ms-css,toggle方法对应ms-visible,它的数据缓存功能avalon也 ...

  3. Varint 数值压缩

    [Varint 数值压缩] Varint 是一种紧凑的表示数字的方法.它用一个或多个字节来表示一个数字,值越小的数字使用越少的字节数.这能减少用来表示数字的字节数.比如对于 int32 类型的数字,一 ...

  4. Simple Style

    <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" x ...

  5. 17.Letter Combinations of a Phone Number(Back-Track)

    Given a digit string, return all possible letter combinations that the number could represent. A map ...

  6. DSOframer 的简单介绍和资源整理(2015-09-02重新整理)

    DSOframer 是微软提供一款开源的用于在线编辑 Word. Excel .PowerPoint 的 ActiveX 控件.国内很多著名的 OA 中间件,电子印章,签名留痕等大多数是依此改进而来的 ...

  7. java 实现模拟浏览器 访问网站

    一般的情况下我们都是使用IE或者Navigator浏览器来访问一个WEB服务器,用来浏览页面查看信息或者提交一些数据等等.所访问的这些页面 有的仅仅是一些普通的页面,有的需要用户登录后方可使用,或者需 ...

  8. 【新手指南】App原型设计:如何快速实现这6种交互效果?

    做App原型设计,那么页面切换.进度条.页面滚动.图片轮播,下拉菜单,搜索框这些交互效果必不可少.如何简单快速地实现这些效果呢?以下小编根据经验为大家提供了一些简单的设计方法,以供参考. 1.页面跳转 ...

  9. 利用NotePad++ 格式化代码(格式标准化) worldsing

    在阅读别人的代码时往往会遇到格式很乱,阅读起来很费劲,如果手动改很容易出错,而且很费时间,这时可以借助一些专业的编辑器来格式化代码,NotePad++是一个轻量级的代码编辑器,占用内存少,运行速度快, ...

  10. 如何用Python实现常见机器学习算法-1

    最近在GitHub上学习了有关python实现常见机器学习算法 目录 一.线性回归 1.代价函数 2.梯度下降算法 3.均值归一化 4.最终运行结果 5.使用scikit-learn库中的线性模型实现 ...