【LG4841】城市规划

题面

洛谷

题解

记\(t_i\)表示\(i\)个点的无向图个数,显然\(t_i=2^{C_i^2}\)。

设\(f_i\)表示\(i\)个点的无向连通图个数,容斥一下,枚举\(1\)号点所在连通块的大小,再让剩下的点随便构成联通图,

则有:

\[f_i=t_i-\sum_{j=1}^{i-1}f_j*C_{i-1}^{j-1}*t_{i-j}
\]

展开组合数:

\[f_i=t_i-\sum_{j=1}^{i-1}f_j*t_{i-j}*\frac {(i-1)!}{(i-j)!(j-1)!}\\
\Leftrightarrow \frac {f_i}{(i-1)!}=\frac {t_i}{(i-1)!}-\sum_{j=1}^{i-1}\frac {f_j}{(j-1)!}*\frac {t_{i-j}}{(i-j)!}
\]

设\(g_i=\frac {f_i}{(i-1)!},h_i=\frac {t_i}{i!}\),那么

\[g_i=i*h_i-\sum_{j=1}^{i-1}g_i*h_i
\]

分治+\(NTT\)即可。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int Mod = 1004535809;
int fpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % Mod;
x = 1ll * x * x % Mod;
y >>= 1;
}
return res;
}
const int G = 3, iG = fpow(G, Mod - 2);
const int MAX_N = 4e5 + 5; int Limit, rev[MAX_N];
void NTT(int *p, int op) {
for (int i = 0; i < Limit; i++) if (i < rev[i]) swap(p[i], p[rev[i]]);
for (int i = 1; i < Limit; i <<= 1) {
int rot = fpow(op == 1 ? G : iG, (Mod - 1) / (i << 1));
for (int j = 0; j < Limit; j += (i << 1)) {
int w = 1;
for (int k = 0; k < i; k++, w = 1ll * w * rot % Mod) {
int x = p[j + k], y = 1ll * w * p[i + j + k] % Mod;
p[j + k] = (x + y) % Mod, p[i + j + k] = (x - y + Mod) % Mod;
}
}
}
if (op == -1) {
int inv = fpow(Limit, Mod - 2);
for (int i = 0; i < Limit; i++) p[i] = 1ll * p[i] * inv % Mod;
}
} int g[MAX_N], h[MAX_N];
void Div(int l, int r) {
if (l == r) return ;
static int A[MAX_N], B[MAX_N], C[MAX_N];
int mid = (l + r) >> 1;
Div(l, mid);
int p = 0;
for (Limit = 1; Limit <= (r - l) * 2; Limit <<= 1, ++p) ;
for (int i = 0; i < Limit; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (p - 1));
for (int i = 0; i <= mid - l; i++) A[i] = g[i + l];
for (int i = 0; i < r - l; i++) B[i] = h[i + 1];
for (int i = mid - l + 1; i < Limit; i++) A[i] = 0;
for (int i = r - l; i < Limit; i++) B[i] = 0;
NTT(A, 1); NTT(B, 1);
for (int i = 0; i < Limit; i++) C[i] = 1ll * A[i] * B[i] % Mod;
NTT(C, -1);
for (int i = mid + 1; i <= r; i++) g[i] = (g[i] - C[i - 1 - l] + Mod) % Mod;
Div(mid + 1, r);
}
int N, fac[MAX_N], ifc[MAX_N];
int C(int n, int m) {
if (m > n) return 0;
else return 1ll * fac[n] * ifc[m] % Mod * ifc[n - m] % Mod;
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
cin >> N;
fac[0] = 1; for (int i = 1; i <= N; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
ifc[N] = fpow(fac[N], Mod - 2); for (int i = N - 1; ~i; i--) ifc[i] = 1ll * ifc[i + 1] * (i + 1) % Mod;
for (int i = 1; i <= N; i++) h[i] = 1ll * fpow(2, 1ll * i * (i - 1) / 2 % (Mod - 1)) * ifc[i] % Mod;
for (int i = 1; i <= N; i++) g[i] = 1ll * ifc[i - 1] * fpow(2, 1ll * i * (i - 1) / 2 % (Mod - 1)) % Mod;
Div(1, N);
printf("%d\n", (int)(1ll * g[N] * fac[N - 1] % Mod));
return 0;
}

【LG4841】城市规划的更多相关文章

  1. 浅谈城市规划在移动GIS方面的应用发展

    1.概述 城市建设进程加快,城市规划管理工作日趋繁重,各种来源的数据产生各种层出不穷的问题,严重影响城市规划时的准确性,为此全面合理的掌握好各方面的城市规划资料才能做出更加科学的决策.移动端的兴起为规 ...

  2. 【BZOJ-1952】城市规划 [坑题] 仙人掌DP + 最大点权独立集(改)

    1952: [Sdoi2010]城市规划 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 73  Solved: 23[Submit][Status][ ...

  3. BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...

  4. 【BZOJ3456】城市规划(生成函数,多项式运算)

    [BZOJ3456]城市规划(生成函数,多项式运算) 题面 求\(n\)个点的无向连通图个数. \(n<=130000\) 题解 \(n\)个点的无向图的个数\(g(n)=2^{C_n^2}\) ...

  5. 洛谷 P4841 城市规划 解题报告

    P4841 城市规划 题意 n个有标号点的简单(无重边无自环)无向连通图数目. 输入输出格式 输入格式: 仅一行一个整数\(n(\le 130000)\) 输出格式: 仅一行一个整数, 为方案数 \( ...

  6. 【BZOJ3456】城市规划 多项式求逆

    [BZOJ3456]城市规划 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得 ...

  7. 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)

    3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题 ...

  8. [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)

    城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...

  9. bzoj 3456 城市规划 多项式求逆+分治FFT

    城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1091  Solved: 629[Submit][Status][Discuss] Desc ...

随机推荐

  1. 解决pycharm 提示no tests were found的问题

    在使用pycharm,做日志模块封装,代码中觉得没有问题,运行就提示no  tests were found 查询了下这个问题,原因是我创建的类名是以test方法开头,类似这样 不知道是不是把它默认当 ...

  2. PhoneGap模仿微信摇一摇功能

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  3. PhoneGap检测设备网络连接情况

    一.网络连接状态列表 Phonegap 网络连接通过 navigator.network.connection.type 来获取,一般有一下几种状态 1. Connection.UNKNOWN     ...

  4. PhoneGap获取设备信息

    一. 获取设备信息的方法列表(如果没有或者检测不出来就显示undefined) 1.device.name              设备名称(一些国产机检测不出来) 2.device.model   ...

  5. 【转+修改】容联云通讯api调用短信发送调用

    转自   https://my.oschina.net/u/1995134/blog/814540 需要荣联云通讯 的 相对应SDKjar包. CCP_REST_SMS_SDK_JAVA_v2.6.3 ...

  6. InputStream TO byte

    public class ByteToInputStream { public static final InputStream byte2Input(byte[] buf) { return new ...

  7. Presentation 常用的承接句——技术分享、学术报告串联全场不尴尬

    前言 现在即使是搞技术,做科研的,也需要在不同的场合,用ppt来做分享,做汇报,做总结. 如果国际会议,研讨会,或者在外企,国外工作,英文的presentation就更加必不可少.英语的提升需要大家从 ...

  8. iOS 二维码生成 记录一下

    #import <CoreImage/CoreImage.h> @property (nonatomic, nonnull , strong) UIImageView *showImage ...

  9. iOS的AssetsLibrary框架访问所有相片

    该框架下有几个类,ALAssetsLibrary,ALAssetsGroup,ALAsset,ALAssetsFilter,ALAssetRepresentation. ALAssetsLibrary ...

  10. a^b%c 小技巧

    我们知道像a^b这种数在计算的时候由于大的增长速度非常快,所以常常越界,所以非常多题目在出的时候都会让我们取模. a^b = a*a*a*a--(一共b个a相乘):我们前一篇文章在说两个数相乘的时 , ...