Hive新功能 Cube, Rollup介绍
说明:Hive之cube、rollup,还有窗口函数,在传统关系型数据(Oracle、sqlserver)中都是有的,用法都很相似。
GROUPING SETS
GROUPING SETS作为GROUP BY的子句,允许开发人员在GROUP BY语句后面指定多个统计选项,可以简单理解为多条group by语句通过union all把查询结果聚合起来结合起来,下面是几个实例可以帮助我们了解,
以acorn_3g.test_xinyan_reg为例:
[dp@YZSJHL19-87 xjob]$ hive -e "use acorn_3g;desc test_xinyan_reg;"
user_id bigint None
device_id int None 手机,平板
os_id int None 操作系统类型
app_id int None 手机app_id
client_version string None 客户端版本
from_id int None 四级渠道
几个demo帮助大家了解:
| grouping sets语句 | 等价hive语句 |
|---|---|
| select device_id,os_id,app_id,count(user_id) from test_xinyan_reg group by device_id,os_id,app_id grouping sets((device_id)) | SELECT device_id,null,null,count(user_id) FROM test_xinyan_reg group by device_id |
| select device_id,os_id,app_id,count(user_id) from test_xinyan_reg group by device_id,os_id,app_id grouping sets((device_id,os_id)) | SELECT device_id,os_id,null,count(user_id) FROM test_xinyan_reg group by device_id,os_id |
| select device_id,os_id,app_id,count(user_id) from test_xinyan_reg group by device_id,os_id,app_id grouping sets((device_id,os_id),(device_id)) | SELECT device_id,os_id,null,count(user_id) FROM test_xinyan_reg group by device_id,os_id UNION ALL SELECT device_id,null,null,count(user_id) FROM test_xinyan_reg group by device_id |
| select device_id,os_id,app_id,count(user_id) from test_xinyan_reg group by device_id,os_id,app_id grouping sets((device_id),(os_id),(device_id,os_id),()) | SELECT device_id,null,null,count(user_id) FROM test_xinyan_reg group by device_id UNION ALL SELECT null,os_id,null,count(user_id) FROM test_xinyan_reg group by os_id UNION ALL SELECT device_id,os_id,null,count(user_id) FROM test_xinyan_reg group by device_id,os_id UNION ALL SELECT null,null,null,count(user_id) FROM test_xinyan_reg |
CUBE函数
cube简称数据魔方,可以实现hive多个任意维度的查询,cube(a,b,c)则首先会对(a,b,c)进行group by,然后依次是(a,b),(a,c),(a),(b,c),(b),(c),最后在对全表进行group by,他会统计所选列中值的所有组合的聚合
select device_id,os_id,app_id,client_version,from_id,count(user_id)
from test_xinyan_reg
group by device_id,os_id,app_id,client_version,from_id with cube;
手工实现需要写的hql语句(写个程序自己生成的,手写累死):
SELECT device_id,null,null,null,null ,count(user_id) FROM test_xinyan_reg group by device_id
UNION ALL
SELECT null,os_id,null,null,null ,count(user_id) FROM test_xinyan_reg group by os_id
UNION ALL
SELECT device_id,os_id,null,null,null ,count(user_id) FROM test_xinyan_reg group by device_id,os_id
UNION ALL
SELECT null,null,app_id,null,null ,count(user_id) FROM test_xinyan_reg group by app_id
UNION ALL
SELECT device_id,null,app_id,null,null ,count(user_id) FROM test_xinyan_reg group by device_id,app_id
UNION ALL
SELECT null,os_id,app_id,null,null ,count(user_id) FROM test_xinyan_reg group by os_id,app_id
UNION ALL
SELECT device_id,os_id,app_id,null,null ,count(user_id) FROM test_xinyan_reg group by device_id,os_id,app_id
UNION ALL
SELECT null,null,null,client_version,null ,count(user_id) FROM test_xinyan_reg group by client_version
UNION ALL
SELECT device_id,null,null,client_version,null ,count(user_id) FROM test_xinyan_reg group by device_id,client_version
UNION ALL
SELECT null,os_id,null,client_version,null ,count(user_id) FROM test_xinyan_reg group by os_id,client_version
UNION ALL
SELECT device_id,os_id,null,client_version,null ,count(user_id) FROM test_xinyan_reg group by device_id,os_id,client_version
UNION ALL
SELECT null,null,app_id,client_version,null ,count(user_id) FROM test_xinyan_reg group by app_id,client_version
UNION ALL
SELECT device_id,null,app_id,client_version,null ,count(user_id) FROM test_xinyan_reg group by device_id,app_id,client_version
UNION ALL
SELECT null,os_id,app_id,client_version,null ,count(user_id) FROM test_xinyan_reg group by os_id,app_id,client_version
UNION ALL
SELECT device_id,os_id,app_id,client_version,null ,count(user_id) FROM test_xinyan_reg group by device_id,os_id,app_id,client_version
UNION ALL
SELECT null,null,null,null,from_id ,count(user_id) FROM test_xinyan_reg group by from_id
UNION ALL
SELECT device_id,null,null,null,from_id ,count(user_id) FROM test_xinyan_reg group by device_id,from_id
UNION ALL
SELECT null,os_id,null,null,from_id ,count(user_id) FROM test_xinyan_reg group by os_id,from_id
UNION ALL
SELECT device_id,os_id,null,null,from_id ,count(user_id) FROM test_xinyan_reg group by device_id,os_id,from_id
UNION ALL
SELECT null,null,app_id,null,from_id ,count(user_id) FROM test_xinyan_reg group by app_id,from_id
UNION ALL
SELECT device_id,null,app_id,null,from_id ,count(user_id) FROM test_xinyan_reg group by device_id,app_id,from_id
UNION ALL
SELECT null,os_id,app_id,null,from_id ,count(user_id) FROM test_xinyan_reg group by os_id,app_id,from_id
UNION ALL
SELECT device_id,os_id,app_id,null,from_id ,count(user_id) FROM test_xinyan_reg group by device_id,os_id,app_id,from_id
UNION ALL
SELECT null,null,null,client_version,from_id ,count(user_id) FROM test_xinyan_reg group by client_version,from_id
UNION ALL
SELECT device_id,null,null,client_version,from_id ,count(user_id) FROM test_xinyan_reg group by device_id,client_version,from_id
UNION ALL
SELECT null,os_id,null,client_version,from_id ,count(user_id) FROM test_xinyan_reg group by os_id,client_version,from_id
UNION ALL
SELECT device_id,os_id,null,client_version,from_id ,count(user_id) FROM test_xinyan_reg group by device_id,os_id,client_version,from_id
UNION ALL
SELECT null,null,app_id,client_version,from_id ,count(user_id) FROM test_xinyan_reg group by app_id,client_version,from_id
UNION ALL
SELECT device_id,null,app_id,client_version,from_id ,count(user_id) FROM test_xinyan_reg group by device_id,app_id,client_version,from_id
UNION ALL
SELECT null,os_id,app_id,client_version,from_id ,count(user_id) FROM test_xinyan_reg group by os_id,app_id,client_version,from_id
UNION ALL
SELECT device_id,os_id,app_id,client_version,from_id ,count(user_id) FROM test_xinyan_reg group by device_id,os_id,app_id,client_version,from_id
UNION ALL
SELECT null,null,null,null,null ,count(user_id) FROM test_xinyan_reg
看着很蛋疼是不是,体会到cube的强大了吗!(低版本hive可以通过union all方式解决,算是没有办法的办法)
ROLL UP函数
rollup可以实现从右到做递减多级的统计,显示统计某一层次结构的聚合。
select device_id,os_id,app_id,client_version,from_id,count(user_id)
from test_xinyan_reg
group by device_id,os_id,app_id,client_version,from_id with rollup;
等价以下sql语句:
select device_id,os_id,app_id,client_version,from_id,count(user_id)
from test_xinyan_reg
group by device_id,os_id,app_id,client_version,from_id
grouping sets ((device_id,os_id,app_id,client_version,from_id),(device_id,os_id,app_id,client_version),(device_id,os_id,app_id),(device_id,os_id),(device_id),());
Grouping_ID函数
当我们没有统计某一列时,它的值显示为null,这可能与列本身就有null值冲突,这就需要一种方法区分是没有统计还是值本来就是null。(写一个排列组合的算法,就马上理解了,grouping_id其实就是所统计各列二进制和)
直接拿官方文档一个例子,O(∩_∩)O哈哈~
| Column1 (key) | Column2 (value) |
|---|---|
| 1 | NULL |
| 1 | 1 |
| 2 | 2 |
| 3 | 3 |
| 3 | NULL |
| 4 | 5 |
hql统计:
SELECT key, value, GROUPING__ID, count(*) from T1 GROUP BY key, value WITH ROLLUP
统计结果如下:
| NULL | NULL | 0 00 | 6 |
| 1 | NULL | 1 10 | 2 |
| 1 | NULL | 3 11 | 1 |
| 1 | 1 | 3 11 | 1 |
| 2 | NULL | 1 10 | 1 |
| 2 | 2 | 3 11 | 1 |
| 3 | NULL | 1 10 | 2 |
| 3 | NULL | 3 11 | 1 |
| 3 | 3 | 3 11 | 1 |
| 4 | NULL | 1 10 | 1 |
| 4 | 5 | 3 11 | 1 |
GROUPING__ID转变为二进制,如果对应位上有值为null,说明这列本身值就是null。(通过类DataFilterNull.py 扫描,可以筛选过滤掉列中null、“”统计结果),
窗口函数
hive窗口函数,感觉大部分都是在模仿oracle,有对oracle熟悉的,应该看下就知道怎么用。
具体参见:http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/language_manual/ptf-window.html
主要围绕..over( partitoin by ..) ..
3g业务求新增激活时候,有的一部手机,可能注册多个渠道,这时候就要按时间顺序求第一个:
select f.udid,f.from_id,f.ins_date
from (select /* +MAPJOIN(u) */ u.device_id as udid ,g.device_id as gdid,u.from_id,u.ins_date,row_number() over (partition by u.device_id order by u.ins_date asc) as row_number
from user_device_info u
left outer join (select device_id from 3g_device_id where log_date<'2013-07-25') g on ( u.device_id = g.device_id )
where u.log_date='2013-07-25' and u.device_id is not null and u.device_id <> '') f
where f.gdid is null and row_number=1
参考资料
apache hive窗口函数官方介绍:http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/language_manual/ptf-window.html
apache hive官方:cube、rollup函数介绍:https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation,+Cube,+Grouping+and+Rollup
oracle窗口函数介绍:http://www.blogjava.net/pengpenglin/archive/2012/04/12/211334.html
Hive新功能 Cube, Rollup介绍的更多相关文章
- hive新功能cube和rollup
1.cube简称数据魔方,可以实现hive多个任意维度的查询,cube(a,b,c)则首先会对(a,b,c)进行group by,然后依次是(a,b),(a,c),(a),(b,c),(b),(c), ...
- Android 9 新功能 及 API 介绍(提供了实用的模块化的功能支持,包括 人工智能)
Android 9(API 级别 28)为用户和开发者引入了众多新特性和新功能. 本文重点介绍面向开发者的新功能. 要了解新 API,请阅读 API 差异报告或访问 Android API 参考. ...
- hive 之 Cube, Rollup介绍
1. GROUPING SETS GROUPING SETS作为GROUP BY的子句,允许开发人员在GROUP BY语句后面指定多个统维度,可以简单理解为多条group by语句通过union al ...
- geotrellis使用(二十)geotrellis1.0版本新功能及变化介绍
目录 前言 变化情况介绍 总结 一.前言 之前版本是0.9或者0.10.1.0.10.2,最近发现更新成为1.0.0-2077839.1.0应该也能称之为正式版了吧.发现其中有很多变化, ...
- hive新特性reflect函数介绍
reflect函数可以支持在sql中调用java中的自带函数,秒杀一切udf函数. 使用案例1:所有记录执行相同的java内置函数 hive中建一张表test_udf:column1(int),col ...
- nopCommerce 3.2新功能
NopCommerce版本3.20,上周被释放,对于那些你谁还不熟悉新版本或刚经过脱脂发行说明我们的新功能的详细介绍. 在nopCommerce 3.20新功能的工作往往需要某些设置或语言资源的快速修 ...
- TFS 2015新功能之一,当前迭代查询标记
TFS 2015发布在即,有幸作为MVP提前获得了TFS的RTM版本,下面就TFS 2015的新功能做一些介绍: TFS 2015新功能之一,当前迭代查询标记 在TFS的查询中,可以将" ...
- MFC界面库BCGControlBar v30.1新功能详解:Dialogs和Forms
亲爱的BCGSoft用户,我们非常高兴地宣布BCGControlBar Professional for MFC和BCGSuite for MFC v30.1正式发布!此版本包含themed find ...
- Apache Flink 1.9.0版本新功能介绍
摘要:Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能.目前,Apache Flink 1.9 ...
随机推荐
- install ros-indigo-camera-info-manager
CMake Warning at /opt/ros/indigo/share/catkin/cmake/catkinConfig.cmake: (find_package): Could not fi ...
- hdu1527威佐夫博弈
参考博客 https://hrbust-acm-team.gitbooks.io/acm-book/content/game_theory/wei_zuo_fu_bo_yi.html 满足 ,后手必胜 ...
- 兼容360模式自动播放视频【需要flvpalyer.swf】
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" codebase="http://down ...
- wikioi1036 商务旅行 挺水的lca
链接:http://wikioi.com/problem/1036/ 题意不写了. 思路:很明显找到lca然后用两个点的深度相加-lca的深度就是这一步的最近步数. #include <stdi ...
- Windows 7 IIS7.5上部署MVC实例
这段时间在用MVC写一个导游网站,在Window7上部署的时候,遇到和处理了一些问题. 现将完整的过程整理出来,供大家参考: 一.部署准备: 1.安装Microsoft .net FrameWork ...
- 集成学习之Boosting —— Gradient Boosting原理
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...
- Alpha阶段第2周/共2周 Scrum立会报告+燃尽图 04
作业要求[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2287] 版本控制:https://git.coding.net/liuyy08 ...
- Sqlserver 按照时间段统计数据
WITH t1 ( [hour], title ) , ' 0:00:00--- 1:00:00' UNION ALL , ' 1:00:00--- 2:00:00' UNION ALL , ' 2: ...
- CS231n课程笔记翻译8:神经网络笔记 part3
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 3,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改.译文含 ...
- PyalgoTrade 技术组合计算(四)
可以各种技术可以组合起来.它们被建模为DataSeries.例如,在收盘价之上获得RSI以上的计算SMA,是非常简单的: from pyalgotrade import strategy from p ...